Photothermal conversion (PTC) nanostructures have great potential for applications in many fields, and therefore, they have attracted tremendous attention. However, the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties. Herein, we designed and synthesized a catalytically active, PTC gold (Au)@polydopamine (PDA) nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template. The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique. They feature permeable shells with tunable shell thickness. Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems. Notably, a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated, which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction. The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770829 | PMC |
http://dx.doi.org/10.1007/s40820-019-0314-9 | DOI Listing |
Lab Chip
December 2024
Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
Multi-organ-on-chip systems (MOOCs) have the potential to mimic communication between organ systems and reveal mechanisms of health and disease. However, many existing MOOCs are challenging for non-experts to implement due to complex tubing, electronics, or pump mechanisms. In addition, few MOOCs have incorporated immune organs such as the lymph node (LN), limiting their applicability to model critical events such as vaccination.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Biological and Environmental Sciences, University of Gothenburg, Sweden; Institute for Environmental Research, RWTH Aachen University, Germany.
Bacterial communities respond to environmental conditions with diverse structural and functional changes depending on their compartment (water, biofilm or sediment), type of environmental stress, and type of pollution to which they are exposed. In this study, we combined amplicon sequencing of bacterial 16S rRNA genes from water, biofilm, and sediment samples collected in the anthropogenically impacted River Aconcagua basin (Central Chile, South America), in order to evaluate whether micropollutants alter bacterial community structure and functioning based on the type and degree of chemical pollution. Furthermore, we evaluated the potential of bacterial communities from differently polluted sites to degrade contaminants.
View Article and Find Full Text PDFNeural Netw
February 2025
Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; Center for Long-term Artificial Intelligence, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. Electronic address:
Inspired by the brain's information processing using binary spikes, spiking neural networks (SNNs) offer significant reductions in energy consumption and are more adept at incorporating multi-scale biological characteristics. In SNNs, spiking neurons serve as the fundamental information processing units. However, in most models, these neurons are typically simplified, focusing primarily on the leaky integrate-and-fire (LIF) point neuron model while neglecting the structural properties of biological neurons.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
Purkinje cell (PC) dendrites are optimized to integrate the vast cerebellar input array and drive the sole cortical output. PCs are classically seen as stereotypical computational units, yet mouse PCs are morphologically diverse and those with multi-branched structure can receive non-canonical climbing fiber (CF) multi-innervation that confers independent compartment-specific signaling. While otherwise uncharacterized, human PCs are universally multi-branched.
View Article and Find Full Text PDFFront Cell Neurosci
October 2024
Faculty of Computer Science and Biomedical Engineering, Institute of Neural Engineering, Graz University of Technology, Graz, Austria.
Recent studies indicate that astrocytes show heterogeneity in morphology and physiological function. They integrate synaptic signals and release calcium in reaction to active neurons. These calcium signals are not yet fully understood as they are highly dependent on the cell's morphology, which can vary across and within brain regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!