AI Article Synopsis

  • Researchers developed flexible supercapacitor electrodes using a "graft-deposit-coat" strategy, combining CNT, MnO, and graphene on carbon cloth for improved performance.
  • The graphene-enhanced carbon cloth increases surface area and conductivity, which helps in efficient charge transfer and uniform MnO deposition.
  • The resulting electrodes show high mass loading, excellent conductivity, and large capacitance in an asymmetric supercapacitor with a working voltage of 2.2V and an energy density of 10.18 mWh/cm.

Article Abstract

Flexible supercapacitor electrodes with high mass loading are crucial for obtaining favorable electrochemical performance but still challenging due to sluggish electron and ion transport. Herein, rationally designed CNT/MnO/graphene-grafted carbon cloth electrodes are prepared by a "graft-deposit-coat" strategy. Due to the large surface area and good conductivity, graphene grafted on carbon cloth offers additional surface areas for the uniform deposition of MnO (9.1 mg cm) and facilitates charge transfer. Meanwhile, the nanostructured MnO provides abundant electroactive sites and short ion transport distance, and CNT coated on MnO acts as interconnected conductive "highways" to accelerate the electron transport, significantly improving redox reaction kinetics. Benefiting from high mass loading of electroactive materials, favorable conductivity, and a porous structure, the electrode achieves large areal capacitances without compromising rate capability. The assembled asymmetric supercapacitor demonstrates a wide working voltage (2.2 V) and high energy density of 10.18 mWh cm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770775PMC
http://dx.doi.org/10.1007/s40820-019-0316-7DOI Listing

Publication Analysis

Top Keywords

mass loading
12
carbon cloth
12
cloth electrodes
8
high mass
8
ion transport
8
cnt/high mass
4
loading mno/graphene-grafted
4
mno/graphene-grafted carbon
4
electrodes high-energy
4
high-energy asymmetric
4

Similar Publications

Bones develop to structurally balance strength and mobility. Bone developmental dynamics are influenced by whether an animal is ambulatory at birth ( precocial). Precocial species, such as goats, develop advanced skeletal maturity in utero, making them useful models for studying the dynamics of bone formation under mechanical load.

View Article and Find Full Text PDF

Fungal highly reducing polyketide synthases (hrPKSs) are remarkable multidomain enzymes that catalyse the biosynthesis of a diverse range of structurally complex compounds. During biosynthesis, the ketosynthase (KS) and acyltransferase (AT) domains of the condensing region are visited by the acyl carrier protein (ACP) domain during every cycle, catalysing chain priming and elongation reactions. Despite their significance, our comprehension of how these steps contribute to biosynthetic fidelity remains poorly understood.

View Article and Find Full Text PDF

Control of Two Solid Electrolyte Interphases at the Negative Electrode of an Anode-Free All Solid-State Battery based on Argyrodite Electrolyte.

Adv Mater

January 2025

Materials Science and Engineering Program, Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

Anode-free all solid-state batteries (AF-ASSBs) employ "empty" current collector with three active interfaces that determine electrochemical stability; lithium metal - Solid electrolyte (SE) interphase (SEI-1), lithium - current collector interface, and collector - SE interphase (SEI-2). Argyrodite LiPSCl (LPSCl) solid electrolyte (SE) displays SEI-2 containing copper sulfides, formed even at open circuit. Bilayer of 140 nm magnesium/30 nm tungsten (Mg/W-Cu) controls the three interfaces and allows for state-of-the-art electrochemical performance in half-cells and fullcells.

View Article and Find Full Text PDF

A high proportion of individuals with Achilles tendinopathy continue to demonstrate long-term symptoms and functional impairments after exercise treatment. Thus, there is a need to delineate patient presentations that may require alternative treatment. The objective of this study was to evaluate if the presence of metabolic risk factors relates to tendon symptoms, psychological factors, triceps surae structure, and lower limb function in individuals with Achilles tendinopathy.

View Article and Find Full Text PDF

Preoperative Computed Tomography Radiomics-Based Models for Predicting Microvascular Invasion of Intrahepatic Mass-Forming Cholangiocarcinoma.

J Comput Assist Tomogr

November 2024

From the Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China.

Objectives: The aim of the study is to investigate the ability of preoperative CT (Computed Tomography)-based radiomics signature to predict microvascular invasion (MVI) of intrahepatic mass-forming cholangiocarcinoma (IMCC) and develop radiomics-based prediction models.

Materials And Methods: Preoperative clinical data, basic CT features, and radiomics features of 121 IMCC patients (44 with MVI and 77 without MVI) were retrospectively reviewed. The loading and display of CT images, delineation of the volume of interest, and feature extraction were performed using 3D Slicer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!