Coordination compounds with redox-active ligands are currently intensively studied. Within this research theme, redox-active guanidines have been established as a new, eminent class of redox-active ligands. In this work the variation of metal-guanidine bonding in dinuclear transition metal complexes with bridging redox-active tetrakisguanidine ligands is analysed. A series of dinuclear complexes with different metals (Mn, Fe, Co, Ni, Cu and Zn) is synthesized, using either newly prepared redox-active tetrakisguanidino-dioxine or previously reported tetrakisguanidino-benzene ligands. The discussion of the bond properties in this work is predominantly based on the trends of structural parameters, derived from determination of single-crystal structures by X-ray diffraction and quantum chemical calculations. In addition, the trends in the redox potentials and magnetometric (SQUID) measurements on some of the complexes are included. Due to their combined σ- and π-electron donor capability, redox-active guanidine ligands are weak-field ligands; the σ- and π-bonding contributions vary with the metal. The results highlight the peculiarity of copper-guanidine bonding with a high π-bond contribution to metal-guanidine bonding, enabled by structural distortion of the coordination mode from tetrahedral in the direction of square-planar, short copper-guanidine bonds and minor displacement of the copper atoms from the ligand aromatic plane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt01354h | DOI Listing |
Inorg Chem
December 2024
Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States.
The nonheme iron(II) complexes containing a fluoride anion, Fe(BNPAO)(F) () and [Fe(BNPAOH)(F)(THF)](BF) (), were synthesized and structurally characterized. Addition of dioxygen to either or led to the formation of a fluoride-bridged, dinuclear iron(III) complex [Fe(BNPAO)(F)(μ-F)] (), which was characterized by single-crystal X-ray diffraction, H NMR, and elemental analysis. An iron(II)(iodide) complex, Fe(BNPAO)(I) (), was prepared and reacted with O to give the mononuclear complex -Fe(BNPAO)(OH)(I) ().
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan.
The title compound, [Zn(CHClNO)Cl], is a dinuclear zinc(II) complex with three chlorido ligands and one penta-dentate ligand containing quinolin-8-olato and bis-(pyridin-2-ylmeth-yl)amine groups. One of the two Zn atom adopts a tetra-hedral geometry and coordinates two chlorido ligands with chelate coord-ination of the N and O atoms of the quinolin-8-olato group in the ligand. The other Zn atom adopts a distorted trigonal-bipyramidal geometry, and coordinates one chlorido-O atom of the quinolin-8-olato group and three N atoms of the bis-(pyridin-2-ylmeth-yl)amine unit.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.
Anticipating intramolecular excited-state proton-coupled electron transfer (PCET) process within dinuclear Ir-photocatalytic system via the covalent linkage is seminal, yet challenging. Indeed, the development of various dinuclear complexes is also promising for studying integral photophysics and facilitating applications in catalysis or biology. Herein, this study reports dinuclear [Ir(bis{imidazo-phenanthrolin-2-yl}-hydroquinone)(ppy)] (1) complex by leveraging both ligand-centered redox property and intramolecular H-bonding for exploring dual excited-state proton-transfer assisted PCET process.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan.
One of the goals in synthetic chemistry is to obtain compounds featuring unusual valence states that are stable under ambient conditions. At present, stabilizing unusual Pt(III) states is considered difficult, except through direct Pt-Pt bonding such as that in platinum-blues or organometallization using bulky ligands. Pt(III) stabilization is also very difficult in halogen-bridged metal complex chains (MX-Chains).
View Article and Find Full Text PDFChemistry
December 2024
Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
In our effort to establish a direct synthetic approach for bis(dihydridoborate) complexes of first-row transition metals, we have investigated the reactivity of [Cp*Fe(dppe)Cl] (dppe =1,2-bis(diphenylphosphino)ethane) with Na[BHL] (L =2-mercaptopyridine (mp) and 2-mercaptobenzothiazole (mbz)) that led to the formation of iron(II) dihydridoborate complexes, [Cp*Fe{κ-S,H,H-(HBH(L))}] 1 a-b (L=mp (1 a) and L=mbz (1 b)). Further, in an attempt to isolate the bis(dihydridoborate) complex of iron by the insertion of borane into the κ-N,S-chelated iron complex, [(dppe)Fe{κ-N,S-(mp)}] (2), we have isolated and structurally characterized a rare example of dimeric iron bis(dihydridoborate) complex, [Fe{κ-S,H,H-(HBH(mp))}], ΛΔ/ΔΛ-3 as pair of enantiomers. Interestingly, these enantiomers ΛΔ/ΔΛ-3 have two trans-[Fe{κ-S,H,H-(HBH(mp))}] moieties bridged through sulfur atoms of 2-mercaptopyridinyl ligands, where the iron centres are hepta-coordinated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!