AI Article Synopsis

  • Bivalent thrombin-binding aptamers (TBAs) show promise for treating thrombosis due to their potent anticoagulant properties and the ability of complementary single-stranded DNA (ssDNA) to act as an antidote, though a specific design strategy for these antidotes hasn't been established.
  • The study aimed to enhance bivalent TBAs by linking an effective aptamer (M08) with another aptamer (HD22), leading to a new aptamer (M08-T15-HD22) that displayed about 5 times greater anticoagulant activity than previous versions.
  • A variety of complementary ssDNA sequences were designed to effectively neutralize this new aptamer, with findings indicating that shorter antidotes (like the

Article Abstract

Background: Bivalent thrombin-binding aptamers (TBAs) have great potential for the treatment of thrombosis because they exhibit high anticoagulant activity, and their complementary single-stranded DNA (ssDNA) sequences work as an antidote. However, a design strategy for antidote sequences against bivalent aptamers has not been established.

Objectives: To develop bivalent TBAs using M08, which exhibits higher anticoagulant activity than the previously reported exosite Ⅰ-binding DNA aptamers, such as HD1, an exosite Ⅱ-binding DNA aptamer (HD22) was linked to M08 with various types of linkers. In addition, short-length complementary ssDNAs were designed to neutralize the optimized bivalent aptamer effectively and rapidly.

Results: Among the bivalent aptamers of M08 linked to HD22 with various types of linkers, M08-T15-HD22 possessed approximately 5-fold higher anticoagulant activity than previously reported bivalent aptamers. To neutralize the activity of the 87-meric M08-T15-HD22, complementary ssDNA sequences with different lengths and hybridization segments were designed. The complementary sequence against the M08 moiety played a more important role in neutralizing than that against the HD22 moiety. Hybridization of the T15 linker in the M08-T15-HD22 with the A15 sequence in the antidote accelerated neutralization due to toehold-mediated strand displacement. Interestingly, some shorter-length antidotes showed higher neutralizing activity than the full complementary 87-meric antidote, and the shortest, 34-meric antidote, neutralized most effectively.

Conclusions: A pair comprising an 87-meric bivalent TBA containing M08 and a 34-meric short-length antidote with high anticoagulant and rapid neutralizing activities was developed. This design strategy of the DNA sequence can be used for other bivalent DNA aptamers and their antidotes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178692PMC
http://dx.doi.org/10.1002/rth2.12503DOI Listing

Publication Analysis

Top Keywords

design strategy
12
anticoagulant activity
12
bivalent aptamers
12
bivalent
10
strategy antidote
8
sequence bivalent
8
bivalent aptamer
8
bivalent dna
8
high anticoagulant
8
ssdna sequences
8

Similar Publications

A Mobile App for Promoting Breastfeeding-Friendly Communities in Hong Kong: Design and Development Study.

JMIR Form Res

January 2025

School of Nursing, Li Ka Shing Faculty of Medicine, University of Hong Kong, 5/F, Academic Building, Pokfulam, Hong Kong, China (Hong Kong), 852 39176690.

Background: Breastfeeding is vital for the health and well-being of both mothers and infants, and it is crucial to create supportive environments that promote and maintain breastfeeding practices.

Objective: The objective of this paper was to describe the development of a breastfeeding-friendly app called "bfGPS" (HKU TALIC), which provides comprehensive territory-wide information on breastfeeding facilities in Hong Kong, with the goal of fostering a breastfeeding-friendly community.

Methods: The development of bfGPS can be categorized into three phases, which are (1) planning, prototype development, and preimplementation evaluation; (2) implementation and updates; and (3) usability evaluation.

View Article and Find Full Text PDF

Lanthanide-Assisted Function Tailoring of the HOF-Based Logic Gate Sensor Array for Biothiol Detection and Disease Discrimination.

Anal Chem

January 2025

Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.

The advancement of lanthanide fingerprint sensors characterized by targeted emission responses and low self-fluorescence interference for the detection of biothiols is of considerable importance for the early diagnosis and treatment of cancer. Herein, the lanthanide "personality function tailoring" HOF composite sensor array is designed for the specific discrimination of biothiols (GSH, Cys, and Hcy) based on the activation of various luminescent molecules, such as r-AuNCs/luminol via HOF surface proximity. Lumi-HOF@Ce serves as a versatile platform for catalyzing the oxidation of -phenylenediamine (OPD) to generate yellow fluorescent oligomers, accompanied by the fluorescence attenuation of luminol.

View Article and Find Full Text PDF

Despite recent advances, improvements to long-term survival in metastatic carcinomas, such as pancreatic or ovarian cancer, remain limited. Current therapies suppress growth-promoting biochemical signals, ablate cells expressing tumor-associated antigens, or promote adaptive immunity to tumor neoantigens. However, these approaches are limited by toxicity to normal cells using the same signaling pathways or expressing the same antigens, or by the low frequency of neoantigens in most carcinomas.

View Article and Find Full Text PDF

Biological containment is a critical safeguard for genetically engineered microbes prior to their environmental release to prevent proliferation in unintended regions. However, few biocontainment strategies can support the longer-term microbial survival that may be desired in a target environment without repeated human intervention. Here, we introduce the concept of an orthogonal obligate commensalism for the autonomous creation of environments that are permissive for survival of a biocontained microbe.

View Article and Find Full Text PDF

Unlabelled: Quantitative understanding of mitochondrial heterogeneity is necessary for elucidating the precise role of these multifaceted organelles in tumor cell development. We demonstrate an early mechanistic role of mitochondria in initiating neoplasticity by performing quantitative analyses of structure-function of single mitochondrial components coupled with single cell transcriptomics. We demonstrate that the large Hyperfused-Mitochondrial-Networks (HMNs) of keratinocytes promptly get converted to the heterogenous Small-Mitochondrial-Networks (SMNs) as the stem cell enriching dose of the model carcinogen, TCDD, depolarizes mitochondria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!