In this research, an unrivalled hybrid scheme which involves the coupling of the new Elzaki integral transform (an improved version of Laplace transform) and a modified differential transform called the projected differential transform (PDTM) have been implemented to solve the generalized Burgers-Fisher's equation; which springs up due to the fusion of the Burgers' and the Fisher's equation; describing convective effects, diffusion transport or interaction between reaction mechanisms, traffic flows; and turbulence; consequently finding meaningful applicability in the applied sciences viz: gas dynamics, fluid dynamics, turbulence theory, reaction-diffusion theory, shock-wave formation, traffic flows, financial mathematics, and so on. Using the proposed Elzaki projected differential transform method (EPDTM), a generalized exact solution (Solitary solution) in form of a Taylor multivariate series has been obtained; of which the highly nonlinear terms and derivatives handled by PDTM have been decomposed without expansion, computation of Adomian or He's polynomials, discretization, restriction of parameters, and with less computational work whilst achieving a highly convergent results when compared to other existing analytical/exact methods in the literature, via comparison tables, 3D plots, convergence plots and fluid-like plots. Thus showing the distinction, novelty and huge advantage of the proposed method as an asymptotic alternative, in providing generalized or solitary wave solution to a wider class of differential equations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8180614PMC
http://dx.doi.org/10.1016/j.heliyon.2021.e07001DOI Listing

Publication Analysis

Top Keywords

differential transform
16
solitary wave
8
wave solution
8
generalized burgers-fisher's
8
burgers-fisher's equation
8
transform method
8
hybrid scheme
8
projected differential
8
traffic flows
8
transform
6

Similar Publications

The present study describes the differentiation process of male germ cells in Octopus vulgaris, the morphology of sperm in the testis and spermatophore, and the sperm released after the spermatophoric reaction. During spermatogenesis, the male sperm cell gradually elongates from a round shape, with cytoplasm shifting toward the head and the acrosome forming. Additionally, in the spermatid stage, the flagellum develops within the posterior nuclear channel and extends outside the cytoplasm.

View Article and Find Full Text PDF

Importance: More than 4 million Medicare beneficiaries have enrolled in dual-eligible Special Needs Plans (D-SNPs), and coordination-only D-SNPs are common. Little is known about the impact of coordination-only D-SNPs on Medicaid-covered services and spending, including long-term services and supports, which are financed primarily by Medicaid.

Objective: To evaluate changes in Medicaid fee-for-service (FFS) spending before and after new enrollment in coordination-only D-SNPs vs new enrollment in non-D-SNP Medicare Advantage (MA) plans among community-living beneficiaries enrolled in both Medicare and North Carolina Medicaid.

View Article and Find Full Text PDF

In vitro stretch modulates mitochondrial dynamics and energy metabolism to induce smooth muscle differentiation in mesenchymal stem cells.

FASEB J

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

The smooth muscle cells (SMCs) located in the vascular media layer are continuously subjected to cyclic stretching perpendicular to the vessel wall and play a crucial role in vascular wall remodeling and blood pressure regulation. Mesenchymal stem cells (MSCs) are promising tools to differentiate into SMCs. Mechanical stretch loading offers an opportunity to guide the MSC-SMC differentiation and mechanical adaption for function regeneration of blood vessels.

View Article and Find Full Text PDF

Background: Cervical cancer is the fourth most common cancer in women globally, and the main cause of the disease has been found to be ongoing HPV infection. Cervical cancer remains the primary cause of cancer-related death despite major improvements in screening and treatment approaches, especially in low- and middle-income nations. Therefore, it is crucial to investigate the tumor microenvironment in advanced cervical cancer in order to identify possible treatment targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!