Event-Based Sensing and Signal Processing in the Visual, Auditory, and Olfactory Domain: A Review.

Front Neural Circuits

School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom.

Published: December 2021

The nervous systems converts the physical quantities sensed by its primary receptors into trains of events that are then processed in the brain. The unmatched efficiency in information processing has long inspired engineers to seek brain-like approaches to sensing and signal processing. The key principle pursued in neuromorphic sensing is to shed the traditional approach of periodic sampling in favor of an event-driven scheme that mimicks sampling as it occurs in the nervous system, where events are preferably emitted upon the change of the sensed stimulus. In this paper we highlight the advantages and challenges of event-based sensing and signal processing in the visual, auditory and olfactory domains. We also provide a survey of the literature covering neuromorphic sensing and signal processing in all three modalities. Our aim is to facilitate research in event-based sensing and signal processing by providing a comprehensive overview of the research performed previously as well as highlighting conceptual advantages, current progress and future challenges in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203204PMC
http://dx.doi.org/10.3389/fncir.2021.610446DOI Listing

Publication Analysis

Top Keywords

sensing signal
20
signal processing
20
event-based sensing
12
processing visual
8
visual auditory
8
auditory olfactory
8
neuromorphic sensing
8
processing
6
signal
5
sensing
5

Similar Publications

Evolutionary pressures adapted insect chemosensation to the respective insect's physiological needs and tasks in their ecological niches. Solitary nocturnal moths rely on their acute olfactory sense to find mates at night. Pheromones are detected with maximized sensitivity and high temporal resolution through mechanisms that are mostly unknown.

View Article and Find Full Text PDF

AI integration into wavelength-based SPR biosensing: Advancements in spectroscopic analysis and detection.

Anal Chim Acta

March 2025

Artificial Intelligence Research Center, Chang Gung University, Taoyuan, 333323, Taiwan; Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan, 333323, Taiwan. Electronic address:

Background: In recent years, employing deep learning methods in the biosensing area has significantly reduced data analysis time and enhanced data interpretation and prediction accuracy. In some SPR fields, research teams have further enhanced detection capabilities using deep learning techniques. However, the application of deep learning to spectroscopic surface plasmon resonance (SPR) biosensors has not been reported.

View Article and Find Full Text PDF

Confined CHA-HCR system for sensitive and specific detection of ANXA2 mRNA in adenomyosis tissues.

J Pharm Biomed Anal

January 2025

Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350005, China; FujianKey Laboratory of Women and Children's Critical Diseases Research, Fuzhou, Fujian 350005, China. Electronic address:

Isothermal, enzyme-free amplification techniques, such as the hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA), have gained significant attention for mRNA analysis. Despite their potential, these methods still face challenges, including false positives and low amplification efficiency. To overcome these limitations, we have developed a confined catalytic hairpin assembly and hybridization chain reaction (CHA-HCR) system that utilizes cholesterol-modified hairpin probes to enhance the sensitivity and specificity of mRNA detection.

View Article and Find Full Text PDF

Exploring wood-derived biochar potential for electrochemical sensing of fungicides mancozeb and maneb in environmental water samples.

Talanta

January 2025

Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000, Novi Sad, Serbia.

The sustainable material, biochar (BC) from a hardwood source, was synthesized via pyrolysis process at 400 °C (BC400) and 700 °C (BC700) and used as a modifier during the electrochemical sensor design. The prepared BCs were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, and elemental analysis (CHNS). The development of rapid analytical techniques for detecting pesticides employing a low-cost carbon paste electrode (CPE) modified with BC is a novel strategy to provide a sensitive response to water pollution.

View Article and Find Full Text PDF

A machine-learning-integrated portable electrochemiluminescence sensing platform for the visualization and high-throughput immunoassays.

Talanta

January 2025

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China. Electronic address:

Electrochemiluminescence (ECL)-based point-of-care testing (POCT) has the potential to facilitate the rapid identification of diseases, offering advantages such as high sensitivity, strong selectivity, and minimal background interference. However, as the throughput of these devices increases, the issues of increased energy consumption and cross-contamination of samples remain. In this study, a high-throughput ECL biosensor platform with the assistance of machine learning algorithms is developed by combining a microcolumn array electrode, a microelectrochemical workstation, and a smartphone with custom software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!