Sowing density is one of the most influential factors affecting corn yield. Here, we tested the hypothesis that, according to soil attributes, maximum corn productivity can be attained by varying the seed population. Specifically, our objectives were to identify the soil attributes that affect grain yield, in order to generate a model to define the optimum sowing rate as a function of the attributes identified, and determine which vegetative growth indices can be used to predict yield most accurately. The experiment was conducted in Chapadão do Céu-GO in 2018 and 2019 at two different locations. Corn was sown as the second crop after the soybean harvest. The hybrids used were AG 8700 PRO3 and FS 401 PW, which have similar characteristics and an average 135-day cropping cycle. Tested sowing rates were 50, 55, 60, and 65 thousand seeds ha. Soil attributes evaluated included pH, calcium, magnesium, phosphorus, potassium, organic matter, clay content, cation exchange capacity, and base saturation. Additionally, we measured the correlation between the different vegetative growth indices and yield. Linear correlations were obtained through Pearson's correlation network, followed by path analysis for the selection of cause and effect variables, which formed the decision trees to estimate yield and seeding density. Magnesium and apparent electrical conductivity (EC) were the most important soil attributes for determining sowing density. Thus, the plant population should be 56,000 plants ha to attain maximum yield at EC values > 7.44 mS m. In addition, the plant population should be 64,800 plants ha at values < 7.44 mS m when magnesium levels are greater than 0.13 g kg, and 57,210 plants ha when magnesium content is lower. Trial validation showed that the decision tree effectively predicted optimum plant population under the local experimental conditions, where yield did not significantly differ among populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208989PMC
http://dx.doi.org/10.1038/s41598-021-92238-4DOI Listing

Publication Analysis

Top Keywords

soil attributes
16
grain yield
8
sowing density
8
vegetative growth
8
growth indices
8
plant population
8
yield
7
sowing
5
attributes
5
variable-rate corn
4

Similar Publications

Chemical weathering processes play a key role in regulating the global climate over geological time scales. Lithium (Li) isotope compositions have proven to be a robust proxy for tracing weathering processes that produce secondary minerals, such as clays and oxides, with a focus often placed on Li adsorption to, or incorporation into, clay minerals. In addition, the interaction between Li and Fe-oxides has long been assumed and discussed based on field observations, but experimental constraints on this process are lacking.

View Article and Find Full Text PDF

To limit damage from insect herbivores, plants rely on a blend of defensive mechanisms that includes partnerships with beneficial microbes, particularly those inhabiting roots. While ample evidence exists for microbially mediated resistance responses that directly target insects through changing phytotoxin and volatile profiles, we know surprisingly little about the microbial underpinnings of plant tolerance. Tolerance defenses counteract insect damage via shifts in plant physiology that reallocate resources to fuel compensatory growth, improve photosynthetic efficiency, and reduce oxidative stress.

View Article and Find Full Text PDF

Plant chemical composition is a trait gaining increasing importance in plant ecology. However, there is limited research on the patterns and drivers of its variation among different plant functional groups and bioclimatic regions. We conducted an analysis of ionomes utilising X-ray fluorescence on 83 plant species from four distinct functional groups (grasses, legumes, forbs and woody species); we marked plots across 15 sites located in both the desert and Mediterranean bioclimatic regions.

View Article and Find Full Text PDF

Wheat, a staple food crop globally, faces the challenges of limited water resources and sustainable soil management practices. The pivotal elements of the current study include the integration of activated acacia biochar (AAB) in wheat cultivation under varying irrigation regimes (IR). A field trial was conducted in the Botanical Garden, University of the Punjab, Lahore during 2023-2024, designed as a split-split-plot arrangement with RCBD comprising three AAB levels (0T, 5T, and 10T, T = tons per hectare) three wheat cultivars (Dilkash-2020, Akbar-2019, and FSD-08) receiving five IR levels (100%, 80%, 70%, 60%, and 50% field capacity).

View Article and Find Full Text PDF

was first introduced to Ethiopia in the late 19 century to address the scarcity of firewood and construction wood in the capital city. Since then, it has spread across the country and has become an important source of income for many households while also reducing the need for deforestation. Despite concerns raised by environmentalists about its eco-hydrological impact, the plantation has expanded to cover a vast area of the nation, including farmlands and mountainous regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!