With the increasing number of overseas talent tasks in China, overseas talent and job fit are significant issues that aim to improve the utilization of this key human resource. Many studies based on fuzzy sets have been conducted on this topic. Among the many fuzzy set methods, intuitionistic fuzzy sets are usually utilized to express and handle the evaluation information. In recent years, various intuitionistic fuzzy decision-making methods have been rapidly developed and used to solve evaluation problems, but none of them can be used to solve the person-job fit problem with intuitionistic best-worst method (BWM) and TOPSIS methods considering large-scale group decision making (LSGDM) and evaluator social network relations (SNRs). Therefore, to solve problems of intuitionistic fuzzy information analysis and the LSGDM for high-level overseas talent and job fit, we construct a new hybrid two-sided matching method named I-BTM and an LSGDM method considering SNRs. On the one hand, to express the decision-making information more objectively and reasonably, we combine the BWM and TOPSIS in an intuitionistic environment. Additionally, we develop the LSGDM with optimized computer algorithms, where the evaluators' attitudes are expressed by hesitant fuzzy language. Finally, we build a model of high-level overseas talent and job fit and establish a mutual criteria system that is applied to a case study to illustrate the efficiency and reasonableness of the model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209089 | PMC |
http://dx.doi.org/10.1038/s41598-021-92057-7 | DOI Listing |
J Cell Mol Med
February 2025
Department of Chemotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China.
Tumour cells possess a multitude of chemoresistance mechanisms, which could plausibly contribute to the ineffectiveness of chemotherapy. O-methylguanine-DNA methyltransferase (MGMT) is an important effector protein associated with Temozolomide (TMZ) resistance in various tumours. To some extent, the expression level of MGMT determines the sensitivity of cells to TMZ, but the mechanism of its expression regulation has not been fully elucidated.
View Article and Find Full Text PDFSmall
January 2025
Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK.
Bismuth-layered ferroelectric nanomaterials exhibit great potential for piezo-photocatalysis. However, a major challenge lies in the difficulty of recovering the catalytic powders, raising concerns regarding secondary pollution of water. In this work, a novel hierarchical porous ferroelectric ceramic containing {110} surface-exposed BiNdTiO (BIT-Nd) nanosheet arrays is grown on a porous ceramic matrix for efficient and recyclable piezo-photocatalysis.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China.
Transition metal oxides, distinguished by their high theoretical specific capacitance values, inexpensive cost, and low toxicity, have been extensively utilized as electrode materials for high-performance supercapacitors. Nevertheless, their conductivity is generally insufficient to facilitate rapid electron transport at high rates. Therefore, research on bimetallic oxide electrode materials has become a hot spot, especially in the field of micro-supercapacitors (MSC).
View Article and Find Full Text PDFAnimals (Basel)
January 2025
The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
Fatty acids (FAs) are a group of organic compounds that are regulated by polygenic and environmental factors and affect the taste, nutritional value, and quality of meat. Lamb meat is rich in FAs required by the human body, which has directed more attention to sheep research and meat production. The fatty acid-binding protein 4 () gene is considered a candidate gene that can affect FA composition in livestock.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.
Plants have evolved complex mechanisms to cope with diverse abiotic stresses, with the phenylpropanoid pathway playing a central role in stress adaptation. This pathway produces an array of secondary metabolites, particularly polyphenols, which serve multiple functions in plant growth, development, regulating cellular processes, and stress responses. Recent advances in understanding the molecular mechanisms underlying phenylpropanoid metabolism have revealed complex regulatory networks involving MYB transcription factors as master regulators and their interactions with stress signaling pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!