A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities. | LitMetric

Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities.

Light Sci Appl

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.

Published: June 2021

Optical microcavities have become an attractive platform for precision measurement with merits of ultrahigh sensitivity, miniature footprint and fast response. Despite the achievements of ultrasensitive detection, optical microcavities still face significant challenges in the measurement of biochemical and physical processes with complex dynamics, especially when multiple effects are present. Here we demonstrate operando monitoring of the transition dynamics of a phase-change material via a self-referencing optofluidic microcavity. We use a pair of cavity modes to precisely decouple the refractive index and temperature information of the analyte during the phase-transition process. Through real-time measurements, we reveal the detailed hysteresis behaviors of refractive index during the irreversible phase transitions between hydrophilic and hydrophobic states. We further extract the phase-transition threshold by analyzing the steady-state refractive index change at various power levels. Our technology could be further extended to other materials and provide great opportunities for exploring on-demand dynamic biochemical processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209048PMC
http://dx.doi.org/10.1038/s41377-021-00570-1DOI Listing

Publication Analysis

Top Keywords

operando monitoring
8
monitoring transition
8
transition dynamics
8
optical microcavities
8
dynamics responsive
4
responsive polymer
4
polymer optofluidic
4
optofluidic microcavities
4
microcavities optical
4
microcavities attractive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!