Powdery mildew caused by Podosphaera xanthii (P. xanthii) severely endangers melon (Cucumis melo L.) production, while the mechanistic understanding about its resistance to powdery mildew remains largely limited. In this study, we integrated transcriptomic and methylomic analyses to explore whether DNA methylation was involved in modulating transcriptional acclimation of melon to P. xanthii infection. Net photosynthetic rate (Pn), stomatal conductance (Gs), actual photochemical efficiency (ФPSII) and maximum PSII quantum yield (Fv/Fm) were significantly decreased in P. xanthii-infected plants relative to uninfected ones (Control), revealing apparent physiological disorders. Totally 4808 differentially expressed genes (DEGs) were identified by global analysis of gene expression in Control and P. xanthii-infected plants. Comparative methylome uncovered that 932 DEGs were associated with hypermethylation, while 603 DEGs were associated with hypomethylation in melon upon P. xanthii infection. Among these differential methylation-involved DEGs, a set of resistance-related genes including R genes and candidate genes in metabolic and defense pathways were further identified, demonstrating that DNA methylation might function as a new regulatory layer for melon resistance to P. xanthii infection. Altogether our study sheds new insights into the molecular mechanisms of melon against powdery mildew and provides some potential targets for improving melon disease resistance in future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2021.110954 | DOI Listing |
J Gerontol A Biol Sci Med Sci
January 2025
Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
Deoxyribonucleic acid (DNA) methylation (DNAm) clocks estimate biological age according to DNA methylation. This study investigated the associations between measures of physical function and physical performance and ten DNAm clocks in the oldest-old in Singapore. The SG90 cohort included a subset of community-dwelling oldest-old from the Singapore Chinese Health Study (SCHS) and Singapore Longitudinal Ageing Study (SLAS).
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFPhysiol Genomics
January 2025
Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany.
Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Plant epigenomics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
J Exp Bot
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
Flowering, a pivotal plant lifecycle event, is intricately regulated by environmental and endogenous signals via genetic and epigenetic mechanisms. Photoperiod is a crucial environmental cue that induces flowering by activating integrators through genetic and epigenetic pathways. However, the specific role of DNA methylation, a conserved epigenetic marker, in photoperiodic flowering remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!