Controlled release of pesticides by light regulation is one of the most viable strategies recently developed for the highly efficient utilization of agrochemicals. Herein, we report an infrared-light-responsive pesticide delivery system for the controlled release of imidacloprid (IMI) by preparation of functional hollow carbon microspheres (HCMs). After IMI loading and surface functionalization with polyethylene glycol (PEG) and α-cyclodextrin (α-CD), IMI was sequestered in the pesticide system (denoted as HCMs/IMI/PEG/α-CD) as a result of the formation of a PEG/α-CD gel network. Upon the irradiation of infrared light, HCMs with high photothermal conversion efficiency (42.8%) raised the local temperature effectively, leading to the collapse of the gel network and the release of IMI. In comparison to the amount of pesticide release (29%) under sunlight, it could reach 77% driven by infrared light, which was an intriguing improvement. Consequently, HCMs/IMI/PEG/α-CD under infrared light showed significantly higher pest control efficacy on corn borers by 125% than itself alone. This work provides a promising method to intentionally regulate pesticide release and enhance utilization efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.1c01265 | DOI Listing |
Nanoscale
January 2025
McMaster University, Department of Engineering Physics, Hamilton, ON M8S 4K1, Canada.
Photoresponsive drug delivery systems have great potential for improved cancer therapy. However, most of the currently available drug-delivery nanosystems are relatively large and require light excitation with low tissue penetration. Here, we designed a near infrared responsive drug delivery system by loading [Ru(terpyridine)(dipyridophenazine)(HO)] (Ru(tpy)DPPZ) in azobenzene-modified mesoporous silica coated NaGdF:Nd/Yb/Tm upconversion nanoparticles (azo-mSiO-UCNPs).
View Article and Find Full Text PDFNat Prod Bioprospect
January 2025
State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
A chemical investigation of Streptomyces sp. GZWMJZ-662, an endophytic actinomycete isolated from Houttuynia cordata Thunb., has yielded eleven bohemamine dimers (1-11).
View Article and Find Full Text PDFACS Nano
January 2025
Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
Specifically improving the intratumoral accumulation and retention and achieving the maximum therapeutic efficacy of small-molecule chemotherapeutics remains a considerable challenge. To address the issue, we here reported near-infrared (NIR) irradiation-activatable targeted covalent nanodrugs by installing diazirine-labeled transferrin receptor 1 (TfR1)-targeted aptamers on PEGylated phospholipid-coated upconversion nanoparticles followed by doxorubicin loading. Targeted covalent nanodrugs recognized and then were activated to covalently cross-link with TfR1 on cancer cells by 980 nm NIR irradiation.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210000, China.
Aiming at the effects caused by stress and deformation on Micro-Electro-Mechanical System (MEMS) sensors, the stress distribution in the radiation area of the MEMS infrared light source is investigated, and by simulating and optimizing the thickness of the composite support film of the chip structure in COMSOL, a film layer thickness matching with lower stress and deformation for the MEMS infrared light source is derived. The utilization of the particle swarm algorithm and backpropagation neural network model allowed for the optimization of simulation data, enabling regression prediction over a broader range of thicknesses and providing a more precise depiction of the stress distribution trend. In addition, the specifications of the MEMS device help us to analyze the design of the support film thickness in the processing of the residual stress within the controllable range.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.
ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!