A consistent evaporation model is developed for the conservative Allen-Cahn-based phase-field lattice Boltzmann method that uses an appropriate source term to recover the advection-diffusion equation for the specific humidity. To evaluate the accuracy of the proposed scheme, simulations are conducted of a steady-state one-dimensional Stefan flow for a flat interface and a three-dimensional evaporating sessile droplet on a flat substrate for a curved interface. It is confirmed that the results for the evaporative mass flux of the Stefan flow agree well with those obtained from the analytical solution within a specific humidity range of 0.8 or less at the liquid-gas interface. For the sessile droplet case, the results for the dependence of the contact angle on the evaporative mass flux and its profile show good agreement with those obtained from the model of Hu and Larson [J. Phys. Chem. B 106, 1334 (2002)JPCBFK1520-610610.1021/jp0118322].

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.103.053307DOI Listing

Publication Analysis

Top Keywords

consistent evaporation
8
phase-field lattice
8
lattice boltzmann
8
boltzmann method
8
specific humidity
8
stefan flow
8
sessile droplet
8
evaporative mass
8
mass flux
8
evaporation formulation
4

Similar Publications

Unveiling the impact of preparation methods, matrix/carrier type selection and drug loading on the supersaturation performance of amorphous solid dispersions.

Int J Pharm

January 2025

Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece. Electronic address:

Amorphous solid dispersions (ASDs) are widely recognized for their potential to enhance the solubility of poorly water-soluble drugs, with factors such as molecular mobility, intermolecular interactions, and storage conditions playing critical roles in their performance. However, the influence of preparation methods on their performance remains underexplored, especially regarding their supersaturation performance. To address this gap, the present study systematically investigates ASDs of ibuprofen (IBU, used as a model drug) prepared using two widely utilized techniques (solvent evaporation, SE, and melt-quench cooling, M-QC).

View Article and Find Full Text PDF

Purpose: The main purpose of this study was to optimize a cyclodextrin-based nanogel of flurbiprofen (FP) for prolonged dermal administration and evaluate its stability, in vitro release, ex vivo skin permeation, and in vivo pharmacokinetic profile.

Methods: The nanogels were prepared via emulsification/solvent evaporation process and optimized through design of experiments. Optimal formulation was characterized via particle size (PS), polydispersity index (PDI), zeta potential (ZP), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD), solubility, stability, in vitro release/ex vivo permeation studies and mathematical modeling, and pharmacokinetic studies conducted in rats.

View Article and Find Full Text PDF

Aim: It was the aim of this study to compare two different dry reverse micelle (RM) preparation methods for the incorporation of hydrophilic drugs into oral self-emulsifying drug delivery systems (SEDDS).

Methods: Cationic ethacridine lactate, anionic fluorescein sodium salt and the antibiotic peptide bacitracin were solubilized in RM containing sodium docusate, soy phosphatidylcholine and sorbitan monooleate in highly lipophilic oils such as squalane. In the dry addition (DA) method, drugs were directly added to empty RM in their powder form.

View Article and Find Full Text PDF

Multiparticulate drug delivery systems offer advantages in controlled release, dose flexibility, and personalized medicine. Fusion prilling, a process that produces spherical lipid-based microparticles through vibrating nozzles, is gaining interest in the field. This study aims to explore the use of fusion prilling to encapsulate crystallizable water-in-oil emulsions, enabling the incorporation of hydrophilic active pharmaceutical ingredients (APIs) within lipid matrices.

View Article and Find Full Text PDF

In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!