The degradation of dyes can generate harmful by-products, thereby requiring the need to evaluate the toxicity to aquatic organisms. This study aims to evaluate the chronic ecotoxicity of methylene blue dye degraded by the Fenton process using the non-target planarian Girardia tigrina as a sensitive bioindicator of environmental contamination. The bioassays evaluated the lethality of several concentrations of the untreated and degraded dye methylene blue (MB), as well as, their sub-lethal effects on locomotion, feeding, regeneration, and reproduction. In both acute and chronic tests, the degraded dye had a stronger toxic effect when compared to the untreated dye. This negative effect after treatment was mainly associated with the presence of residual hydrogen peroxide and iron (and consequently the hydroxyl radical formed). We conclude that the utilization of the Fenton process using less oxidizing agents should be considered as important alternatives for the protection of aquatic ecosystems, without compromising the efficient removal of MB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.131117 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized.
View Article and Find Full Text PDFFood Chem X
January 2025
Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.
The study aimed to assess the oxidative modification behavior of bovine myofibrillar proteins (MPs) cysteines (Cys) by hydroxyl radical (·OH) through the construction of an in vitr Fenton reaction system. The ·OH generated by the Fenton reaction induced large-scale oxidative modification of Cys, and redox proteomics identified a total of 1192 differential oxidation sites (Dos), 59 Dos were located in the MPs structure. The Cys of actin (17 Dos), myosin/myomesin (16 Dos), tenascin (12 Dos) and sarcomere (10 Dos) in the MPs structure showed active oxidative modification behavior towards ·OH, especially with the "-C-X-X-X-X-W-" structure amino acid sequence showed high sensitivity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Chemistry and Materials Science, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
In this study, we developed a multifunctional nanoplatform to address the limitations of strictly acidic pH for the Fenton reaction involving FeO and the low efficiency of mono treatments. The hybrid material, FeO@Cu-TCPP, was assembled through hydrophobic interactions of polyvinylpyrrolidone (PVP) coated on its surface. The efficiency of the Fenton reaction using FeO was significantly enhanced by the photo-Fenton process in the presence of Cu-TCPP.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China. Electronic address:
Cuproptosis shows great prospects in cancer treatments. However, insufficient intracellular copper amount, low-level redox homeostasis, and hypoxic tumor microenvironment severely restrict cuproptosis efficacy. Herein, hydrazided hyaluronan-templated decorated CuO-doxorubicin (CuDT) nanodot clusters (NCs) are developed for efficient doxorubicin (DOX)-sensitized cuproptosis therapy in breast cancer via a three-pronged strategy.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Biochar (BC) possesses diverse active sites (e.g., oxygen-containing groups OCGs, defects, and electronegative heteroatom) responsible for the catalytic reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!