Extracellular proteolytic activation of Pseudomonas aeruginosa aminopeptidase (PaAP) and insight into the role of its non-catalytic N-terminal domain.

PLoS One

Maurice and Gabriela Goldschleger Eye Research Institute, Tel Aviv University Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.

Published: November 2021

Pseudomonas aeruginosa secretes several endopeptidases, including elastase, alkaline proteinase (Apr), a lysine-specific endopeptidase (LysC), and an aminopeptidase (PaAP), all of which are important virulence factors. Activation of the endopeptidases requires removal of an inhibitory N-terminal propeptide. Activation of pro-PaAP, in contrast, requires C-terminal processing. The activating proteases of pro-PaAP and their cleavage site(s) have not yet been defined. Studying pro-PaAP processing in a wild type P. aeruginosa strain and strains lacking either elastase or both elastase and Apr, we detected three processing variants, each ~56 kDa in size (AP56). Activity assays and N- and C-terminal sequence analyses of these variants pointed at LysC as the principal activating protease, cleaving a Lys512-Ala513 peptide bond at the C-terminal end of pro-PaAP. Elastase and/or Apr are required for activation of LysC, suggesting both are indirectly involved in activation of PaAP. To shed light on the function(s) of the N-terminal domain of AP56, we purified recombinant AP56 and generated from it the 28 kDa catalytic domain (AP28). The kinetic constants (Km and Kcat) for hydrolysis of Leu-, Lys-, Arg- and Met-p-nitroanilide (pNA) derivatives by AP56 and AP28 were then determined. The catalytic coefficients (Kcat/Km) for hydrolysis of all four substrates by AP28 and AP56 were comparable, indicating that the non-catalytic domain is not involved in hydrolysis of small substrates. It may, however, regulate hydrolysis of natural peptides/proteins. Lys-pNA was hydrolyzed 2 to 3-fold more rapidly than Leu-pNA and ~8-fold faster than Arg- or Met-pNA, indicating that Lys-pNA was the preferred substrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208579PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252970PLOS

Publication Analysis

Top Keywords

pseudomonas aeruginosa
8
aminopeptidase paap
8
n-terminal domain
8
activation
5
ap56
5
extracellular proteolytic
4
proteolytic activation
4
activation pseudomonas
4
aeruginosa aminopeptidase
4
paap insight
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!