Recent works that utilized deep models have achieved superior results in various image restoration (IR) applications. Such approach is typically supervised, which requires a corpus of training images with distributions similar to the images to be recovered. On the other hand, the shallow methods, which are usually unsupervised remain promising performance in many inverse problems, e.g., image deblurring and image compressive sensing (CS), as they can effectively leverage nonlocal self-similarity priors of natural images. However, most of such methods are patch-based leading to the restored images with various artifacts due to naive patch aggregation in addition to the slow speed. Using either approach alone usually limits performance and generalizability in IR tasks. In this paper, we propose a joint low-rank and deep (LRD) image model, which contains a pair of triply complementary priors, namely, internal and external, shallow and deep, and non-local and local priors. We then propose a novel hybrid plug-and-play (H-PnP) framework based on the LRD model for IR. Following this, a simple yet effective algorithm is developed to solve the proposed H-PnP based IR problems. Extensive experimental results on several representative IR tasks, including image deblurring, image CS and image deblocking, demonstrate that the proposed H-PnP algorithm achieves favorable performance compared to many popular or state-of-the-art IR methods in terms of both objective and visual perception.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2021.3086049 | DOI Listing |
J Chem Phys
May 2024
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China.
Phys Chem Chem Phys
February 2024
Advanced Research Center for Nanolithography, P.O. Box 93019, 1090 BA Amsterdam, The Netherlands.
"Tin-oxo cage" organometallic compounds are considered as photoresists for extreme ultraviolet (EUV) photolithography. To gain insight into their electronic structure and reactivity to ionizing radiation, we trapped bare gas-phase -butyltin-oxo cage dications [(BuSn)O(OH)] in an ion trap and investigated their fragmentation upon soft X-ray photoabsorption by means of mass spectrometry. In complementary experiments, the tin-oxo cages with hydroxide and trifluoroacetate counter-anions were cast in thin films and studied using X-ray transmission spectroscopy.
View Article and Find Full Text PDFACS Nano
August 2023
School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
Self-assembly is the process by which individual components arrange themselves into an ordered structure by changing the shapes, components, and interactions. It has enabled us to construct an extensive range of geometric forms on many length scales. Nevertheless, the potential of two-dimensional polygonal nanoplates to self-assemble into extended three-dimensional structures with compartments and corridors has remained unexplored.
View Article and Find Full Text PDFWe demonstrate quasi-phase matched, triply-resonant sum frequency conversion in 10.6-µm-diameter integrated gallium phosphide ring resonators. A small-signal, waveguide-to-waveguide power conversion efficiency of 8 ± 1.
View Article and Find Full Text PDFRecent works that utilized deep models have achieved superior results in various image restoration (IR) applications. Such approach is typically supervised, which requires a corpus of training images with distributions similar to the images to be recovered. On the other hand, the shallow methods, which are usually unsupervised remain promising performance in many inverse problems, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!