Proper mitotic progression in requires partial nuclear envelope breakdown (NEBD) and insertion of the spindle pole body (SPB-yeast centrosome) to build the mitotic spindle. Linkage of the centromere to the SPB is vital to this process, but why that linkage is important is not well understood. Utilizing high-resolution structured illumination microscopy, we show that the conserved Sad1-UNC-84 homology-domain protein Sad1 and other SPB proteins redistribute during mitosis to form a ring complex around SPBs, which is a precursor for localized NEBD and spindle formation. Although the Polo kinase Plo1 is not necessary for Sad1 redistribution, it localizes to the SPB region connected to the centromere, and its activity is vital for redistribution of other SPB ring proteins and for complete NEBD at the SPB to allow for SPB insertion. Our results lead to a model in which centromere linkage to the SPB drives redistribution of Sad1 and Plo1 activation that in turn facilitate partial NEBD and spindle formation through building of a SPB ring structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351742PMC
http://dx.doi.org/10.1091/mbc.E21-05-0239DOI Listing

Publication Analysis

Top Keywords

polo kinase
8
partial nuclear
8
nuclear envelope
8
envelope breakdown
8
spb
8
nebd spindle
8
spindle formation
8
spb ring
8
redistribution
4
redistribution centrosomal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!