High-Throughput Screening of the Thermoelastic Properties of Ultrahigh-Temperature Ceramics.

ACS Appl Mater Interfaces

Departamento de Química Física, Facultad de Química, Universidad de Sevilla, Seville 41012, Spain.

Published: June 2021

Ultrahigh-temperature ceramics (UHTCs) are a group of materials with high technological interest because of their applications in extreme environments. However, their characterization at high temperatures represents the main obstacle for their fast development. Obstacles are found from an experimental point of view, where only few laboratories around the world have the resources to test these materials under extreme conditions, and also from a theoretical point of view, where actual methods are expensive and difficult to apply to large sets of materials. Here, a new theoretical high-throughput framework for the prediction of the thermoelastic properties of materials is introduced. This approach can be systematically applied to any kind of crystalline material, drastically reducing the computational cost of previous methodologies up to 80% approximately. This new approach combines Taylor expansion and density functional theory calculations to predict the vibrational free energy of any arbitrary strained configuration, which represents the bottleneck in other methods. Using this framework, elastic constants for UHTCs have been calculated in a wide range of temperatures with excellent agreement with experimental values, when available. Using the elastic constants as the starting point, other mechanical properties such a bulk modulus, shear modulus, or Poisson ratio have been also explored, including upper and lower limits for polycrystalline materials. Finally, this work goes beyond the isotropic mechanical properties and represents one of the most comprehensive and exhaustive studies of some of the most important UHTCs, charting their anisotropy and thermal and thermodynamical properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509953PMC
http://dx.doi.org/10.1021/acsami.1c08832DOI Listing

Publication Analysis

Top Keywords

thermoelastic properties
8
ultrahigh-temperature ceramics
8
point view
8
elastic constants
8
mechanical properties
8
properties
5
materials
5
high-throughput screening
4
screening thermoelastic
4
properties ultrahigh-temperature
4

Similar Publications

The impact of tube voltage on the erosion of rotating x-ray anodes.

Med Phys

November 2024

Particle Physics, Astrophysics and Medical Imaging Department, KTH Royal Institute of Technology, Stockholm, Sweden.

Background: The permitted input power density of rotating anode x-ray sources is limited by the performance of available target materials. The commonly used simplified formulas for the focal spot surface temperature ignore the tube voltage despite its variation in clinical practice. Improved modeling of electron transport and target erosion, as proposed in this work, improves the prediction of x-ray output degradation by target erosion, the absolute x-ray dose output and the quality of diagnostic imaging and orthovolt cancer therapy for a wide range of technique factors.

View Article and Find Full Text PDF

Plane, nonlinear Rayleigh wave propagation is investigated in a three-layer sandwich structure of a thermoelastic medium, within the frame of dual-phase-lag theory. The thermal conductivity is taken as a linear function of temperature. This induces nonlinearity in the evolution equations for the heat flux components.

View Article and Find Full Text PDF

The goal of this work is to provide a novel mathematical model that explains how certain physical variables propagate (acoustic-thermal-mechanical diffusive) as waves in a photoexcited non-Gaussian laser pulse semiconductor medium. Under the impact of acoustic pressure, the isotropic and homogeneous semiconductor medium is discussed concerning the fundamental equations according to charge carrier recombination processes with optoelectronic properties. Given the impact that relaxation times have on the governing equations.

View Article and Find Full Text PDF

Homogenization of Thermal Properties in Metaplates.

Materials (Basel)

September 2024

Department of Civil and Environemental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.

Three-dimensional metamaterials endowed with two-dimensional in-plane periodicity exhibit peculiar thermoelastic behaviour when heated or cooled. By proper design of the unit cell, the equivalent thermal expansion coefficient can be programmed and can also reach negative values. The heterogeneity in the third direction of such metamaterials also causes, in general, a thermal-induced deflection.

View Article and Find Full Text PDF

Background: Elastic deformations of gravitating cylindrical bodies are relevant for state-of-the-art photonic experiments, as they affect the physical properties of materials under consideration, impacting wave propagation. This is of key importance for a recently planned experiment to explore the influence of the gravitational field on entangled photons propagating in waveguides. The purpose of this work is to determine these elastic deformations as functions of temperature, pressure, and of the gravitational field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!