Alzheimer's disease is the most common form of dementia, representing 60-70% of dementia cases. The enzyme acetylcholinesterase (AChE) cleaves the ester bonds in acetylcholine and plays an important role in the termination of acetylcholine activity at cholinergic synapses in various regions of the nervous system. The inhibition of acetylcholinesterase is frequently used to treat Alzheimer's disease. In this study, a merged BindingDB and ChEMBL dataset containing molecules with reported half-maximal inhibitory concentration (IC) values for AChE (7032 molecules) was used to build machine learning classification models for selecting potential AChE inhibitors from the SistematX dataset (8593 secondary metabolites). A total of seven fivefold models with accuracy above 80% after cross-validation were obtained using three types of molecular descriptors (VolSurf, DRAGON 5.0, and bit-based fingerprints). A total of 521 secondary metabolites (6.1%) were classified as active in this stage. Subsequently, virtual screening was performed, and 25 secondary metabolites were identified as potential inhibitors of AChE. Separately, the crystal structure of AChE in complex with (-)-galantamine was used to perform molecular docking calculations with the entire SistematX dataset. Consensus analysis of both methodologies was performed. Only eight structures achieved combined probability values above 0.5. Finally, two sesquiterpene lactones, structures 15 and 24, were predicted to be able to cross the blood-brain barrier, which was confirmed in the VolSurf+ quantitative model, revealing these two structures as the most promising secondary metabolites for AChE inhibition among the 8593 molecules tested. A consensus analysis of classification models and molecular docking calculations identified four potential inhibitors of acetylcholinesterase from the SistematX dataset (8593 structures).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11030-021-10245-zDOI Listing

Publication Analysis

Top Keywords

secondary metabolites
16
potential inhibitors
12
sistematx dataset
12
machine learning
8
inhibitors acetylcholinesterase
8
alzheimer's disease
8
classification models
8
dataset 8593
8
identified potential
8
molecular docking
8

Similar Publications

Abiotic stress-induced changes in Tetrastigma hemsleyanum: insights from secondary metabolite biosynthesis and enhancement of plant defense mechanisms.

BMC Plant Biol

December 2024

Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.

Tetrastigma hemsleyanum, a traditional Chinese medicinal plant with anti-inflammatory, anti-cancer, and anti-tumor properties, faces increasing abiotic stress due to climate change, agricultural chemicals, and industrialization. This study investigated how three abiotic stress factors influence antioxidant enzyme activity, MDA levels, DPPH free radical scavenging capacity, chlorophyll, carotenoids, active compounds, and gene expression in different T. hemsleyanum strains.

View Article and Find Full Text PDF

Patulin-degrading enzymes sources, structures, and mechanisms: A review.

Int J Biol Macromol

December 2024

School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. Electronic address:

Patulin (PAT), a fungal secondary metabolite with multiple toxicities, is an unavoidable contaminant in fruit and vegetable processing, posing potential health risks to consumers and causing significant economic losses to the global food industry. Traditional control strategies, such as physical and chemical methods, face several challenges, including low efficiency, high costs, and unverified safety. In contrast, microbial degradation of patulin is considered a more efficient and environmentally friendly approach, which has become a popular research focus.

View Article and Find Full Text PDF

This study investigated the effect of various levels of OH-MWCNTs mediated seed priming on germination, growth, and biochemical responses of Indian mustard (Brassica juncea (L.) Czern. & Coss.

View Article and Find Full Text PDF

Nanomaterials impact in phytohormone signaling networks of plants-A critical review.

Plant Sci

December 2024

Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India. Electronic address:

Nanotechnology offers a transformative approach to augment plant growth and crop productivity under abiotic and biotic stress conditions. Nanomaterials interact with key phytohormones, triggering the synthesis of stress-associated metabolites, activating antioxidant defense mechanisms, and modulating gene expression networks that regulate diverse physiological, biochemical, and molecular processes within plant systems. This review critically examines the impact of nanoparticles on both conventional and genetically modified crops, focusing on their role in nutrient delivery systems and the modulation of plant cellular machinery.

View Article and Find Full Text PDF

This research study critically evaluates the concentrations of selected pharmaceuticals found within wastewater and at various stages within a selected wastewater treatment plant. The study further investigates the effects of seasonal variation, between wet and dry months, on the removal of target analytes. To the best of the authors' knowledge, ivermectin in wastewater has not been investigated in South Africa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!