Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The discrepancy of the number between ophthalmologists and patients in China is large. Retinal vein occlusion (RVO), high myopia, glaucoma, and diabetic retinopathy (DR) are common fundus diseases. Therefore, in this study, a five-category intelligent auxiliary diagnosis model for common fundus diseases is proposed; the model's area of focus is marked.
Methods: A total of 2000 fundus images were collected; 3 different 5-category intelligent auxiliary diagnosis models for common fundus diseases were trained via different transfer learning and image preprocessing techniques. A total of 1134 fundus images were used for testing. The clinical diagnostic results were compared with the diagnostic results. The main evaluation indicators included sensitivity, specificity, F1-score, area under the concentration-time curve (AUC), 95% confidence interval (CI), kappa, and accuracy. The interpretation methods were used to obtain the model's area of focus in the fundus image.
Results: The accuracy rates of the 3 intelligent auxiliary diagnosis models on the 1134 fundus images were all above 90%, the kappa values were all above 88%, the diagnosis consistency was good, and the AUC approached 0.90. For the 4 common fundus diseases, the best results of sensitivity, specificity, and F1-scores of the 3 models were 88.27%, 97.12%, and 84.02%; 89.94%, 99.52%, and 93.90%; 95.24%, 96.43%, and 85.11%; and 88.24%, 98.21%, and 89.55%, respectively.
Conclusions: This study designed a five-category intelligent auxiliary diagnosis model for common fundus diseases. It can be used to obtain the diagnostic category of fundus images and the model's area of focus.
Translational Relevance: This study will help the primary doctors to provide effective services to all ophthalmologic patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212443 | PMC |
http://dx.doi.org/10.1167/tvst.10.7.20 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!