PEDF Gene Deletion Disrupts Corneal Innervation and Ocular Surface Function.

Invest Ophthalmol Vis Sci

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.

Published: June 2021

AI Article Synopsis

Article Abstract

Purpose: The cornea is richly innervated by the trigeminal ganglion (TG) and its function supported by secretions from the adjacent lacrimal (LG) and meibomian glands (MG). In this study we examined how pigment epithelium-derived factor (PEDF) gene deletion affects the cornea structure and function.

Methods: We used PEDF hemizygous and homozygous knockout mice to study effects of PEDF deficiency on corneal innervation assessed by beta tubulin staining, mRNA expression of trophic factors, and PEDF receptors by adjacent supporting glands, corneal sensitivity measured using a Cochet-Bonnet esthesiometer, and tear production using phenol red cotton thread wetting.

Results: Loss of PEDF was accompanied by reduced corneal innervation and sensitivity, increased corneal surface injury and tear production, thinning of the corneal stroma and loss of stromal cells. PEDF mRNA was expressed in the cornea and its supporting tissues, the TG, LG, and MG. Deletion of one or both PEDF alleles resulted in decreased expression of essential trophic support in the TG, LG, and MG including nerve growth factor, brain-derived neurotrophic growth factor, and GDNF with significantly increased levels of NT-3 in the LG and decreased EGF expression in the cornea. Decreased transcription of the putative PEDF receptors, adipose triglyceride lipase, lipoprotein receptor-related protein 6, laminin receptor, PLXDC1, and PLXDC2 was also evident in the TG, LG and MG with the first three showing increased levels in corneas of the Pedf+/- and Pedf-/- mice compared to wildtype controls. Constitutive inactivation of ERK1/2 and Akt was pronounced in the TG and cornea, although their protein levels were dramatically increased in Pedf-/- mice.

Conclusions: This study highlights an essential role for PEDF in corneal structure and function and confirms the reported rescue of exogenous PEDF treatment in corneal pathologies. The pleiotropic effects of PEDF deletion on multiple trophic factors, receptors and signaling molecules are strong indications that PEDF is a key coordinator of molecular mechanisms that maintain corneal function and could be exploited in therapeutic options for several ocular surface diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212434PMC
http://dx.doi.org/10.1167/iovs.62.7.18DOI Listing

Publication Analysis

Top Keywords

pedf
13
corneal innervation
12
corneal
9
pedf gene
8
gene deletion
8
ocular surface
8
effects pedf
8
trophic factors
8
pedf receptors
8
tear production
8

Similar Publications

Aim: This study aimed to evaluate the impact of pterygium excision combined with autologous limbal stem cell transplantation on microvascular density, tear film stability, and corneal wound healing in the management of pterygium.

Methods: A retrospective analysis was conducted on 317 patients with pterygium who underwent treatment between January 2021 and January 2024. Patients were divided into a control group (pterygium excision alone, n = 161) and a study group (pterygium excision combined with autologous limbal stem cell transplantation, n = 156) based on the surgical approach.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) has a high mortality rate worldwide; thus, identifying death risk factors related to ARDS is critical for risk stratification in patients with ARDS. In the present study, we conducted a single-center retrospective cohort analysis. Out of 278 patients with ARDS admitted from January 2016 to June 2022, 226 were included in this study.

View Article and Find Full Text PDF

Purpose: This review explores the role of pigment epithelium-derived factor (PEDF) in retinal degenerative and vascular disorders and assesses its potential both as an adjunct to established vascular endothelial growth factor inhibiting treatments for retinal vascular diseases and as a neuroprotective therapeutic agent.

Methods: A comprehensive literature review was conducted, focusing on the neuroprotective and anti-angiogenic properties of PEDF. The review evaluated its effects on retinal health, its dysregulation in ocular disorders, and its therapeutic application in preclinical models.

View Article and Find Full Text PDF

Probing the familial ties between serpin members Kallistatin and PEDF: A comparative analysis review.

Life Sci

February 2025

Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; China Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China; Guangdong Province Key Laboratory of Diabetology, Guangzhou 510080, China. Electronic address:

The serine protease inhibitors (Serpins) represent a diverse protein superfamily that holds paramount significance in governing vital pathophysiological processes. Their influence on critical biological pathways renders serpins highly coveted targets for drug discovery endeavors. Among the numerous members of this family, two distinct proteins, Kallistatin (encoded by the SERPINA4 gene) and Pigment Epithelium-Derived Factor (PEDF, encoded by the SERPINF1 gene), stand out as secreted proteins that are abundantly present in peripheral blood.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells may have neuroprotective and tissue regenerative capabilities and the potential to rescue retinal degeneration in chorioretinal diseases including myopic chorioretinal atrophy. Transplantation of human (allogeneic) adipose tissue-derived mesenchymal stem cell (adMSC) suspensions has been clinically conducted to treat retinal degenerative diseases. However, serious side effects including proliferative vitreoretinopathy and epiretinal membrane formation have been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!