Role of the carrier density in the transport mechanisms of polycrystalline ZnO films.

Phys Chem Chem Phys

CNR-Istituto di Struttura della Materia, U.O.S. di Monterotondo, Via Salaria Km. 29,300, 00015 Monterotondo St. (Roma), Italy.

Published: July 2021

The transport processes occurring in polycrystalline ZnO have been investigated by measuring the resistivity as a function of temperature in ZnO films with different n-doping levels, obtained by varying the oxygen pressure during the deposition process. These films show an electrical resistivity spanning about two orders of magnitude, from 4 to 8 × 10Ω cm at room temperature, corresponding to low and high levels of n-type doping, respectively. The present results indicate a relevant role of the carrier density in determining the dominant transport mechanisms in these samples by showing that the picture characterizing a highly n-doped ZnO sample, where an intra-grain mechanism and a grain-boundary mechanism dominate the high temperature and low temperature transport processes, respectively, is thoroughly overturned in lightly n-doped samples, where a grain-boundary mechanism and an intra-grain mechanism govern the charge transport in the same temperature regimes, respectively. Moreover, the present results indicate a critical role of the conditions limiting the occurrence of the Mott variable range hopping regime. They show indeed that an incomplete check of such conditions can result in erroneous conclusions about the prevalent transport mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp01612aDOI Listing

Publication Analysis

Top Keywords

transport mechanisms
12
role carrier
8
carrier density
8
polycrystalline zno
8
zno films
8
transport processes
8
intra-grain mechanism
8
grain-boundary mechanism
8
transport
6
temperature
5

Similar Publications

The gram-negative, facultative anaerobic bacterium Morganella morganii is linked to a number of illnesses, including nosocomial infections and urinary tract infections (UTIs). A clinical isolate from a UTI patient in Bangladesh was subjected to high-throughput whole genome sequencing and extensive bioinformatics analysis in order to gather knowledge about the genomic basis of bacterial defenses and pathogenicity in M. morganii.

View Article and Find Full Text PDF

To regulate brain function, peripheral compounds must traverse the blood-brain barrier (BBB), an interface between the brain and the circulatory system. To determine whether specific transport mechanisms are relevant for sleep, we conducted a BBB-specific inducible RNAi knockdown (iKD) screen for genes affecting sleep in . We observed reduced sleep with knockdown of solute carrier , a carnitine transporter, as determined by isotope flux.

View Article and Find Full Text PDF

Breast cancer represents the primary cause of death of women under 65 in developed countries, due to the acquisition of multiple drug resistance mechanisms. The PI3K/AKT pathway is one of the major regulating mechanisms altered during the development of endocrine resistance and inhibition of steps in this signalling pathway are adopted as a key strategy to overcome this issue. ADP-ribosylation is a post-translational modification catalysed by PARP enzymes that regulates essential cellular processes, often altered in diseases.

View Article and Find Full Text PDF

Bacterial adhesion in the gut is critical to evaluate their effectiveness as probiotics. Understanding the bacterial adhesion within the complex gut environment is challenging. This study explores the adhesion mechanisms and the adhesion potential of five selected bacterial strains (Escherichia coli, Lactiplantibacillus plantarum, Faecalibacterium duncaniae, Bifidobacterium longum, and Bifidobacterium longum subsp.

View Article and Find Full Text PDF

Boron, a crucial element for plant growth, has been demonstrated to mitigate cadmium (Cd) absorption in rice seedlings. However, its impact on Cd accumulation in rice grains and the underlying regulatory mechanisms remain poorly understood. The current study explored the roles of boron in reducing Cd accumulation and promoting ripening in rice through pot and hydroponic experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!