Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Silicon nitride (SiN) mechanical resonators with high quality mechanical properties are attractive for fundamental research and applications. However, it is challenging to maintain these mechanical properties while achieving strong coupling to an electrical circuit for efficient on-chip integration. Here, we present a SiN drum resonator covered with an aluminum thin film, enabling large capacitive coupling to a suspended top-gate. Implementing the full electrical measurement scheme, we demonstrate a high quality factor ∼10 (comparable to that of bare drums at room temperature) and present our ability to detect ∼10 mechanical modes at low temperature. The drum resonator is also coupled to a microwave cavity, so that we can perform optomechanical sideband pumping with a fairly good coupling strength and demonstrate mechanical parametric amplification. This SiN drum resonator design provides efficient electrical integration and exhibits promising features for exploring mode coupling and signal processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c01477 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!