A superior comprehensive performance is essential for the extensive utilization of polymers. Current flame-retardant strategies for polycarbonates (PCs) usually realize satisfied fire resistance at the cost of thermostability, toughness, and/or mechanical robustness. Thus, we report a rare-earth-based P, N-containing complex with a lamellar aggregated structure [Ce(DPA)] by a coordination reaction between a tailored ligand and cerium(III) nitrate. The results indicate that incorporating 3 wt % Ce(DPA) enables the resultant PC composite to achieve UL-94 V-0 rating, with a 55% reduction in the peak heat release rate. Besides, the initial () and maximum ( and ) decomposition temperatures are significantly increased by 21, 19, and 27 °C, respectively, in an air atmosphere. Moreover, the impact strength and elongation at break of the PC composite containing 3 wt % Ce(DPA) are greatly increased by 20 and 59%, respectively, relative to pristine PC, while its tensile strength (57 MPa) is still close to that of bulk PC (60 MPa). Notably, this work provides a novel methodology for revealing the evolution mechanisms of chemical structures of vapor and residual products during thermal decomposition, which is conducive to guiding fire and heat resistance modification of PC in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c07153DOI Listing

Publication Analysis

Top Keywords

thermostability toughness
8
fabrication mechanism
4
mechanism study
4
study cerium-based
4
cerium-based n-containing
4
n-containing complexes
4
complexes reducing
4
reducing fire
4
fire hazards
4
hazards polycarbonate
4

Similar Publications

Enhanced toughness of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by incorporating an ADR chain-extending agent and a bio-resourced plasticizer.

Int J Biol Macromol

December 2024

College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China. Electronic address:

Over the past decades, emerging bioplastics have attracted much interest from the scientific and industrial communities because of public concerns about environmental problems and sustainable development. In this study, poly(lactic acid) (PLA) was toughened by ductile biodegradable poly(butylene adipate-co-terephthalate) (PBAT) and biosourced plasticizer epoxidized linseed oil (ELO), and a chain-extending agent (CEA) was added to promote the compatibility and toughness of the bio-blends. It was shown that "in situ" grafted polymers were created in the bio-blends with the aid of CEA, greatly enhancing the compatibility and ductility of the compatibilized blends.

View Article and Find Full Text PDF

Optimized extrusion melt-blending of polylactic acid (PLA) polymer with a minor biopolymeric phase, polybutylene adipate terephthalate (PBAT), and compatibilized with random ethylene-methyl acrylate-glycidyl methacrylate terpolymer (EMA-GMA, Trademark: Lotader AX-8900) led to an outstanding improvement in mechanical properties. At the noncompatibilized PLA-PBAT (80-20) blend point, significant enhancement (∼4500%) in toughness and elongation-at-break was already obtained without compromising any elastic properties. The effect of the compatibilizer content on the mechanical properties of the PLA-PBAT (80-20) blend was investigated by an optimal custom response surface methodology.

View Article and Find Full Text PDF

The selective synthesis of ultrahigh-molar-mass (UHMM, >2 million Da) cyclic polymers is challenging as an exceptional degree of spatiotemporal control is required to overcome the possible undesired reactions that can compete with the desired intramolecular cyclization. Here we present a counterintuitive synthetic methodology for cyclic polymers, represented here by polythioesters, which proceeds via superbase-mediated ring-opening polymerization of gem-dimethylated thiopropiolactone, followed by macromolecular cyclization triggered by protic quenching. This proton-triggered linear-to-cyclic topological transformation enables selective, linear polymer-like access to desired cyclic polythioesters, including those with UHMM surpassing 2 MDa.

View Article and Find Full Text PDF

Comparison of Silk Hydrogels Prepared via Different Methods.

Polymers (Basel)

November 2023

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.

Silk fibroin (SF) hydrogels have garnered extensive attention in biomedical materials, owing to their superior biological properties. However, the challenges facing the targeted silk fibroin hydrogels involve chemical agents and shortfalls in performance. In this study, the silk fibroin hydrogels were prepared in different ways: sonication induction, chemical crosslinking, photopolymerization, and enzyme-catalyzed crosslinking.

View Article and Find Full Text PDF

Nano zinc oxide-decorated graphene (G-ZnO) was blended with polyphenylene sulfide (PPS) to improve its tensile, thermal, crystalline, and barrier properties. The properties of neat PPS and PPS/G-ZnO nanocomposites were characterized and compared using various tests, including tensile tests, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, evaluation of Escherichia coli inhibition, and barrier performance. The results demonstrated that G-ZnO played a crucial role in heterogeneous nucleation and reinforcement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!