The generation of cell-penetrating peptides as cargo-delivery systems has produced an immense number of studies owing to the importance of these systems as tools to deliver molecules into the cells, as well as due to the interest to shed light into a yet unclear mechanism of the entrance of these peptides into the cells. However, many cell-penetrating peptides might present drawbacks due to causing cellular toxicity, or due to being entrapped in endosomes, or as a result of their degradation before they meet their target. In this work, a cargo transporting molecule, the Cell Penetrating Sequential Oligopeptide Carrier (CPSOC), formed by the repetitive -Lys-Aib-Cys- moiety, was tested for its ability to penetrate the cell membrane and transport the conjugated peptides into the cells. The cysteine residue anchors bioactive molecules through a stable thioether bond. The lysine supplies the positive charge to the construct, whereas the α-amino isobutyric acid is well known to induce helicoid conformation to the peptide backbone and protects from enzymatic degradation. The present study demonstrates that CPSOC penetrates the membrane transporting the conjugated cargo into the cell. When we tested CPSOC-conjugated peptides carrying critical domains of Cdc42, a small GTPase implicated in exocytosis, the internalized peptides were found to be functional because they inhibited exocytosis of von Willebrand factor from endothelial Weibel-Palade bodies a trafficking event depending on the Cdc42 protein. The data suggest that the carrier can deliver efficiently functional peptides into the cells, and thus, it can be used as a multiple-cargo transporting molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.3359DOI Listing

Publication Analysis

Top Keywords

transporting molecule
12
peptides cells
12
cargo transporting
8
cell-penetrating peptides
8
peptides
7
intracellular targets
4
targets multiple
4
multiple cargo
4
transporting
4
molecule generation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!