Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While neural networks are powerful approximators used to classify or embed data into lower dimensional spaces, they are often regarded as black boxes with uninterpretable features. Here we propose for making hidden layers more interpretable without significantly impacting performance on the primary task. Taking inspiration from spatial organization and localization of neuron activations in biological networks, we use a graph Laplacian penalty to structure the activations within a layer. This penalty encourages activations to be smooth either on a predetermined graph or on a feature-space graph learned from the data via co-activations of a hidden layer of the neural network. We show numerous uses for this additional structure including cluster indication and visualization in biological and image data sets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201816 | PMC |
http://dx.doi.org/10.1007/978-3-030-44584-3_40 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!