Facioscapulohumeral muscular dystrophy (FSHD) is a debilitating muscle disease that currently does not have an effective cure or therapy. The abnormal reactivation of DUX4, an embryonic gene that is epigenetically silenced in somatic tissues, is causal to FSHD. Disease-specific reactivation of DUX4 has two common characteristics, the presence of a non-canonical polyadenylation sequence within exon 3 of DUX4 that stabilizes pathogenic transcripts, and the loss of repressive chromatin modifications at D4Z4, the macrosatellite repeat which encodes DUX4. We used CRISPR/Cas9 to silence DUX4 using two independent approaches. We deleted the DUX4 pathogenic polyadenylation signal, which resulted in downregulation of pathogenic DUX4-fl transcripts. In another approach, we transcriptionally repressed DUX4 by seeding heterochromatin using the dCas9-KRAB platform within exon 3. These feasibility of targeting DUX4 experiments were initially tested in a non-myogenic carcinoma cell line that we have previously characterized. Subsequently, in an immortalized patient myoblast cell line, we demonstrated that targeting DUX4 by either approach led to substantial downregulation of not only pathogenic DUX4 transcripts, but also a subset of its target genes that are known biomarkers of FSHD. These findings offer proof-of-concept of the effect of silencing the polyadenylation sequence on pathogenic DUX4 expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206090 | PMC |
http://dx.doi.org/10.1038/s41598-021-92096-0 | DOI Listing |
J Cutan Pathol
December 2024
SkinPath Solutions, Smyrna, Georgia, USA.
Capicua transcriptional repressor (CIC)-rearranged sarcoma (CRS) is a rare and recently described tumor that most commonly affects patients between 15 and 30 years of age. It is an undifferentiated round cell malignancy, with a disease defining CIC fusion, with double homeobox 4 (DUX4) being the most common partner. Here, we report a 77-year-old woman who presented with a cutaneous thigh mass with a clinical morphology suggesting Merkel cell carcinoma.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2024
National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India. Electronic address:
Maintaining precise levels of FRG1 is vital. It's over-expression is tied to muscular dystrophy, while reduced levels are linked to tumorigenesis. Despite extensive efforts to characterize FRG1 expression and downstream molecular signaling, a comprehensive understanding of its regulation has remained elusive.
View Article and Find Full Text PDFSkelet Muscle
December 2024
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA.
Germline mutations in SMCHD1, DNMT3B and LRIF1 can cause facioscapulohumeral muscular dystrophy type 2 (FSHD2). FSHD is an epigenetic skeletal muscle disorder in which partial failure in heterochromatinization of the D4Z4 macrosatellite repeat causes spurious expression of the repeat-embedded gene in skeletal muscle, ultimately leading to muscle weakness and wasting. All three proteins play a role in chromatin organization and gene silencing; however, their functional relationship has not been fully elucidated.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy.
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic de-repression of the double homeobox 4 (DUX4) gene, leading to asymmetric muscle weakness and atrophy that begins in the facial and scapular muscles and progresses to the lower limbs. This incurable condition can severely impair muscle function, ultimately resulting in a loss of ambulation. A thorough analysis of molecular factors associated with the varying degrees of muscle impairment in FSHD is still lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!