Social animals self-organise to create groups to increase protection against predators and productivity. One-to-one interactions are the building blocks of these emergent social structures and may correspond to friendship, grooming, communication, among other social relations. These structures should be robust to failures and provide efficient communication to compensate the costs of forming and maintaining the social contacts but the specific purpose of each social interaction regulates the evolution of the respective social networks. We collate 611 animal social networks and show that the number of social contacts E scales with group size N as a super-linear power-law [Formula: see text] for various species of animals, including humans, other mammals and non-mammals. We identify that the power-law exponent [Formula: see text] varies according to the social function of the interactions as [Formula: see text], with [Formula: see text]. By fitting a multi-layer model to our data, we observe that the cost to cross social groups also varies according to social function. Relatively low costs are observed for physical contact, grooming and group membership which lead to small groups with high and constant social clustering. Offline friendship has similar patterns while online friendship shows weak social structures. The intermediate case of spatial proximity (with [Formula: see text] and clustering dependency on network size quantitatively similar to friendship) suggests that proximity interactions may be as relevant for the spread of infectious diseases as for social processes like friendship.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206375 | PMC |
http://dx.doi.org/10.1038/s41598-021-92025-1 | DOI Listing |
Sci Rep
December 2024
Department of Mathematical Sciences, Faculty of Science, Somali National University, Mogadishu Campus, Mogadishu, Somalia.
Phthalocyanine derivative nanostructures are highly organized organometallic structures that exhibit two-dimensional polymeric phthalocyanine frameworks. We analyze phthalocyanine using the Zagreb-type indices, which offer important insights into the topological characteristics of the molecular structure. Furthermore, we use Pearson correlation analysis to examine the degree of relationship between various structural features and qualities.
View Article and Find Full Text PDFSci Rep
December 2024
School of Science, Xi'an Technological University, Xi'an, 710021, PR China.
This paper introduces a class of insulin-glucose-glucocorticoid impulsive systems in the treatment of patients with diabetes to consider the effect of glucocorticoids. The existence and uniqueness of the positive periodic solution of the impulsive model at double fixed time is confirmed for type 1 diabetes mellitus (T1DM) using the [Formula: see text] function. Further, the global asymptotic stability of the positive periodic solution is achieved following Floquet multiplier theory and comparison principle.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, University of Trento, Via Sommarive 14, 38123, Povo (TN), Italy.
It has been argued that realistic models of (singularity-free) black holes (BHs) embedded within an expanding Universe are coupled to the large-scale cosmological dynamics, with striking consequences, including pure cosmological growth of BH masses. In this pilot study, we examine the consequences of this growth for the stochastic gravitational wave background (SGWB) produced by inspiraling supermassive cosmologically coupled BHs. We show that the predicted SGWB amplitude is enhanced relative to the standard uncoupled case, while maintaining the [Formula: see text] frequency scaling of the spectral energy density.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
This study presents an innovative methane gas sensor design based on anti-resonant hollow-core fiber (AR-HCF) technology, optimized for high-precision detection at 3.3[Formula: see text]. Our numerical analysis explores the geometric optimization of the AR-HCF's structural parameters, incorporating real-world component specifications.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!