A dose response model for Staphylococcus aureus.

Sci Rep

Civil and Environmental Engineering, University of California, Irvine, Irvine, 92697, USA.

Published: June 2021

Dose-response models (DRMs) are used to predict the probability of microbial infection when a person is exposed to a given number of pathogens. In this study, we propose a new DRM for Staphylococcus aureus (SA), which causes skin and soft-tissue infections. The current approach to SA dose-response is only partially mechanistic and assumes that individual bacteria do not interact with each other. Our proposed two-compartment (2C) model assumes that bacteria that have not adjusted to the host environment decay. After adjusting to the host, they exhibit logistic/cooperative growth, eventually causing disease. The transition between the adjusted and un-adjusted states is a stochastic process, which the 2C DRM explicitly models to predict response probabilities. By fitting the 2C model to SA pathogenesis data, we show that cooperation between individual SA bacteria is sufficient (and, within the scope of the 2C model, necessary) to characterize the dose-response. This is a departure from the classical single-hit theory of dose-response, where complete independence is assumed between individual pathogens. From a quantitative microbial risk assessment standpoint, the mechanistic basis of the 2C DRM enables transparent modeling of dose-response of antibiotic-resistant SA that has not been possible before. It also enables the modeling of scenarios having multiple/non-instantaneous exposures, with minimal assumptions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206448PMC
http://dx.doi.org/10.1038/s41598-021-91822-yDOI Listing

Publication Analysis

Top Keywords

staphylococcus aureus
8
individual bacteria
8
dose-response
5
dose response
4
model
4
response model
4
model staphylococcus
4
aureus dose-response
4
dose-response models
4
models drms
4

Similar Publications

Surface Fluorination of Silicone Rubber with Enhanced Stain Resistance and Slip Properties.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China.

Silicone rubber (SR) holds significant potential for everyday wearable devices due to its inherent sweat resistance and flexibility. However, its broader applicability is constrained by poor oil resistance and a suboptimal slip performance. In this study, we developed an SR with durable oil resistance and enhanced slip properties by forming a covalently bonded barrier layer on its surface through a one-step in situ fluorination reaction using F/N.

View Article and Find Full Text PDF

Introduction: Intensive research is dedicated to the development of novel biomaterials and medical devices to be used as grafts in reconstructive surgery, with the purpose of enhancing their therapeutic effectiveness, safety, and durability. A variety of biomaterials, from autologous bone to polymethylmetacrylate, polyether ether ketone, titanium, and calcium-based ceramics are used in cranioplasty. Porous hydroxyapatite (PHA) is reported as a possible material for bone reconstruction, with good signs of biocompatibility, osteoconductive and osteointegrative properties.

View Article and Find Full Text PDF

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!