Since the early days of Dirac flux quantization, magnetic monopoles have been sought after as a potential corollary of quantized electric charge. As opposed to magnetic monopoles embedded into the theory of electromagnetism, Weyl semimetals (WSM) exhibit Berry flux monopoles in reciprocal parameter space. As a function of crystal momentum, such monopoles locate at the crossing point of spin-polarized bands forming the Weyl cone. Here, we report momentum-resolved spectroscopic signatures of Berry flux monopoles in TaAs as a paradigmatic WSM. We carried out angle-resolved photoelectron spectroscopy at bulk-sensitive soft X-ray energies (SX-ARPES) combined with photoelectron spin detection and circular dichroism. The experiments reveal large spin- and orbital-angular-momentum (SAM and OAM) polarizations of the Weyl-fermion states, resulting from the broken crystalline inversion symmetry in TaAs. Supported by first-principles calculations, our measurements image signatures of a topologically non-trivial winding of the OAM at the Weyl nodes and unveil a chirality-dependent SAM of the Weyl bands. Our results provide directly bulk-sensitive spectroscopic support for the non-trivial band topology in the WSM TaAs, promising to have profound implications for the study of quantum-geometric effects in solids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206138PMC
http://dx.doi.org/10.1038/s41467-021-23727-3DOI Listing

Publication Analysis

Top Keywords

berry flux
12
flux monopoles
12
signatures berry
8
magnetic monopoles
8
monopoles
6
weyl
5
momentum-space signatures
4
flux
4
monopoles weyl
4
weyl semimetal
4

Similar Publications

Background: Sesquiterpene ( +)-valencene is a characteristic aroma component from sweet orange fruit, which has a variety of biological activities and is widely used in industrial manufacturing of food, beverage and cosmetics industries. However, at present, the content in plant sources is low, and its yield and quality would be influenced by weather and land, which limit the supply of ( +)-valencene. The rapid development of synthetic biology has accelerated the construction of microbial cell factories and provided an effective alternative method for the production of natural products.

View Article and Find Full Text PDF

Passion fruit seed extract protects hydrogen peroxide-induced cell damage in human retinal pigment epithelium ARPE-19 cells.

Sci Rep

January 2025

Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.

Age-related macular degeneration (AMD) is a major cause of vision loss among adults. We investigated the protective effects of passion fruit seed extract (PFSE) and its rich polyphenol piceatannol in an AMD cell model in which human retinal pigment epithelial ARPE-19 cells were exposed to hydrogen peroxide (HO). Using a cell viability WST-8 assay, we revealed that PFSE and piceatannol increased the cellular viability of ARPE-19 cells by 130% and 133%, respectively.

View Article and Find Full Text PDF

Unlabelled: Sarcopenic obesity, encompassing both muscle wasting and obesity, is relevant across individuals. (TS) has been shown to regulate glucose and lipid metabolisms. However, the efficacy and mechanisms of TS fruit (TSF) in sarcopenic obesity are unclear.

View Article and Find Full Text PDF

NAC (NAM, ATAF1/2 and CUC2) is a transcription factor which contributes to the response for both biotic and abiotic stresses. In this study, the regulatory effects and potential mechanisms of SNAC4/9 on resistance to Botrytis cinerea (B. cinerea) were investigated by the differences in physiological and biochemical indices as well as transcriptional and metabolic profiles between SNAC4/9 overexpressed (OE-SNAC4/9) and wild-type (WT) tomato fruit inoculated with B.

View Article and Find Full Text PDF

The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!