Differential Binding of Autoantibodies to MOG Isoforms in Inflammatory Demyelinating Diseases.

Neurol Neuroimmunol Neuroinflamm

From the Clinical Department of Neurology (K.S., P.P., M.L., B.S., H.H., F.D.P., M.R.), Medical University of Innsbruck, Austria; Euroimmun Medizinische Labordiagnostika AG (S. Mindorf, N.R., C.P.), Lübeck, Germany; Institute for Quality Assurance (ifQ) affiliated to Euroimmun (M.P.), Lübeck, Germany; Department of Pediatrics (E.-M.W.), Olgahospital/Klinikum Stuttgart, Germany; Department of Pediatrics I (C.L., M.B.), Medical University of Innsbruck, Austria; Neurology Unit (S. Mariotto, S.F.), Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology and Multiple Sclerosis Unit (A.S.), Service of Neurology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Beaumont Hospital (M.F.), Dublin, Ireland; Oxford Autoimmune Neurology Group (M.I.S.L., S.R.I., J.P., P.W.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Neuroimmunology and MS Research (A.L.), Department of Neurology, University Hospital Zurich & University of Zurich, Switzerland; Institute of Clinical Neuroimmunology (T.K.), Biomedical Center and University Hospital, Ludwig-Maximilians University, Munich, Germany; Department of Neurology (S.V., R.M.), Hospices civils de Lyon, Hôpital neurologique Pierre Wertheimer, France; Paediatric Neurology (K.R.), Witten/Herdecke University, Children's Hospital Datteln, Germany; Department of Neurology (T.B.), Medical University of Vienna, Austria; and Division of Neuropathology and Neurochemistry (R.H.), Department of Neurology, Medical University of Vienna, Austria.

Published: July 2021

Objective: To analyze serum immunoglobulin G (IgG) antibodies to major isoforms of myelin oligodendrocyte glycoprotein (MOG-alpha 1-3 and beta 1-3) in patients with inflammatory demyelinating diseases.

Methods: Retrospective case-control study using 378 serum samples from patients with multiple sclerosis (MS), patients with non-MS demyelinating disease, and healthy controls with MOG alpha-1-IgG positive (n = 202) or negative serostatus (n = 176). Samples were analyzed for their reactivity to human, mouse, and rat MOG isoforms with and without mutations in the extracellular MOG Ig domain (MOG-ecIgD), soluble MOG-ecIgD, and myelin from multiple species using live cell-based, tissue immunofluorescence assays and ELISA.

Results: The strongest IgG reactivities were directed against the longest MOG isoforms alpha-1 (the currently used standard test for MOG-IgG) and beta-1, whereas the other isoforms were less frequently recognized. Using principal component analysis, we identified 3 different binding patterns associated with non-MS disease: (1) isolated reactivity to MOG-alpha-1/beta-1 (n = 73), (2) binding to MOG-alpha-1/beta-1 and at least one other alpha, but no beta isoform (n = 64), and (3) reactivity to all 6 MOG isoforms (n = 65). The remaining samples were negative (n = 176) for MOG-IgG. These MOG isoform binding patterns were associated with a non-MS demyelinating disease, but there were no differences in clinical phenotypes or disease course. The 3 MOG isoform patterns had distinct immunologic characteristics such as differential binding to soluble MOG-ecIgD, sensitivity to MOG mutations, and binding to human MOG in ELISA.

Conclusions: The novel finding of differential MOG isoform binding patterns could inform future studies on the refinement of MOG-IgG assays and the pathophysiologic role of MOG-IgG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8207634PMC
http://dx.doi.org/10.1212/NXI.0000000000001027DOI Listing

Publication Analysis

Top Keywords

mog isoforms
16
binding patterns
12
mog isoform
12
mog
11
differential binding
8
inflammatory demyelinating
8
non-ms demyelinating
8
demyelinating disease
8
soluble mog-ecigd
8
patterns associated
8

Similar Publications

Neuroinflammation is a common component of neurological disorders. In the gut-brain-immune axis, bacteria and their metabolites are now thought to play a role in the modulation of the nervous and immune systems which may impact neuroinflammation. In this respect, commensal bacteria of humans have recently been shown to produce metabolites that mimic endogenous G-protein coupled receptor (GPCR) ligands.

View Article and Find Full Text PDF

Akt1 and Akt2, isoforms of the serine threonine kinase Akt, are essential for T cell development. However, their role in peripheral T cell differentiation remains undefined. Using mice with germline deletions of either Akt1 or Akt2, we found that both isoforms are important for Th17 differentiation, although Akt2 loss had a greater impact than loss of Akt1.

View Article and Find Full Text PDF

Demyelinating diseases of the central nervous system are caused by an autoimmune attack on the myelin sheath surrounding axons. Myelin structural proteins become antigenic, leading to the development of myelin lesions. The use of highly specialized laboratory diagnostic techniques for identification of specific antibodies directed against myelin components can significantly improve diagnostic approaches.

View Article and Find Full Text PDF

More Efficient Complement Activation by Anti-Aquaporin-4 Compared With Anti-Myelin Oligodendrocyte Glycoprotein Antibodies.

Neurol Neuroimmunol Neuroinflamm

January 2023

From the Clinical Department of Neurology (M.L., K.S., H.H., M.R.), Medical University of Innsbruck, Austria; Institute of Hygiene and Medical Microbiology (E.L., R.W., D.W.), Medical University of Innsbruck, Austria; Neurology Unit (S.M., A.D.), Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Italy; Department of Pediatric Neurology (E.M.W.), Olgahospital/Klinikum Stuttgart, Germany; Department of Pediatrics I (C.L.), Medical University of Innsbruck, Austria; Paediatric Neurology (K.R.), Witten/Herdecke University, Children's Hospital Datteln, Germany; Department of Neurology (T.B.), Medical University of Vienna, Austria; and Division of Neuropathology and Neurochemistry (C.L., R.H.), Department of Neurology, Medical University of Vienna, Austria.

Background And Objectives: The objective was to study complement-mediated cytotoxicity induced by immunoglobulin G (IgG) anti-aquaporin-4 antibodies (AQP4-IgG) and anti-myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) in human serum samples from patients suffering from the rare demyelinating diseases of the CNS neuromyelitis optica spectrum disorder (NMOSD) and MOG-IgG-associated disease (MOGAD).

Methods: A cell-based assay with HEK293A cells expressing different MOG isoforms (MOGαβ) or AQP4-M23 was used. Cells were incubated with human MOG-IgG or AQP4-IgG-positive serum samples together with active or heat-inactivated human complement, and complement-dependent cytotoxicity (CDC) was measured with a lactate dehydrogenase assay.

View Article and Find Full Text PDF

Background: Recently, antibodies against the alpha isoform of the glial-fibrillary-acidic-protein (GFAPα) were identified in a small series of patients with encephalomyelitis. Coexisting autoantibodies (NMDA receptor, GAD65 antibodies) have been described in a few of these patients. We describe a patient with rapidly progressive encephalomyeloradiculitis and a combination of anti-ITPR1, anti-GFAP and anti-MOG antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!