Substantia nigra pars compacta (SNc) dopaminergic (DA) neurons display a peculiar electrical phenotype characterized by a spontaneous tonic regular activity (pacemaking activity), a broad action potential (AP) and a biphasic postinhibitory response. The transient A-type current (I) is known to play a crucial role in this electrical phenotype, and so far, this current was considered to be carried exclusively by Kv4.3 potassium channels. Using Kv4.3-/- transgenic mice, we demonstrate that the constitutive loss of this channel is associated with increased exploratory behavior and impaired motor learning at the behavioral level. Consistently, it is also associated with a lack of compensatory changes in other ion currents at the cellular level. Using antigen retrieval (AR) immunohistochemistry, we then demonstrate that Kv4.2 potassium channels are also expressed in SNc DA neurons, although their contribution to I appears significant only in a minority of neurons (∼5-10%). Using correlative analysis on recorded electrophysiological parameters and multicompartment modeling, we then demonstrate that, rather than its conductance level, I gating kinetics (inactivation time constant) appear as the main biophysical property defining postinhibitory rebound delay and pacemaking frequency. Moreover, we show that the hyperpolarization-activated current (I) has an opposing and complementary influence on the same firing features.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293280 | PMC |
http://dx.doi.org/10.1523/ENEURO.0207-21.2021 | DOI Listing |
Mov Disord
January 2025
Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.
Background: Perry syndrome (PS) is a rare and fatal hereditary autosomal dominant neurodegenerative disorder caused by mutations in dynactin (DCTN1). PS brains accumulate inclusions positive for ubiquitin, transactive-response DNA-binding protein of 43 kDa (TDP-43), and to a lesser extent dynactin.
Objectives: Little is known regarding the contributions of TDP-43, an RNA binding protein that represses cryptic exon inclusion, in PS.
Neuron
January 2025
Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:
Attention deficit hyperactivity disorder (ADHD), affecting 4% of the population, is characterized by inattention, hyperactivity, and impulsivity; however, its neurophysiological mechanisms remain unclear. Here, we discovered that deficiency of histamine H receptor (HR) in parvalbumin-positive neurons in substantia nigra pars recticulata (PV) attenuates PV neuronal activity and induces hyperactivity, impulsivity, and inattention in mice. Moreover, decreased HR expression was observed in PV in patients with ADHD symptoms and dopamine-transporter-deficient mice, whose behavioral phenotypes were alleviated by HR agonist treatment.
View Article and Find Full Text PDFJ Neurol Sci
January 2025
UniSA Clinical & Health Sciences and Alliance for Research in Exercise, Nutrition and Activity (ARENA), City East Campus, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia. Electronic address:
The appearance of the substantia nigra (SN) can aid diagnosis of Parkinson's disease (PD). The effect of age and sex on the appearance of nigrosome-1 (SN subregion) on magnetic resonance imaging (MRI), and the relationship between nigrosome-1 (viewed with MRI) and SN echogenicity (viewed with transcranial ultrasound) is unknown. The study aimed to address these knowledge gaps.
View Article and Find Full Text PDFNeuroimage Clin
December 2024
Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Medicine, Institute of Physiology, University of Coimbra, 3004-531 Coimbra, Portugal. Electronic address:
Dysfunctional response inhibition, mediated by the striatum and its connections, is thought to underly the clinical manifestations of obsessive-compulsive disorder (OCD). However, the exact neural mechanisms remain controversial. In this study, we undertook a novel approach by positing that a) inhibition is a dynamic construct inherently susceptible to numerous failures, which require error-processing, and b) the actor-critic framework of reinforcement learning can integrate neural patterns of inhibition and error-processing in OCD with their behavioural correlates.
View Article and Find Full Text PDFComput Med Imaging Graph
January 2025
Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France.
Methods for the automated segmentation of brain structures are a major subject of medical research. The small structures of the deep brain have received scant attention, notably for lack of manual delineations by medical experts. In this study, we assessed an automated segmentation of a novel clinical dataset containing White Matter Attenuated Inversion-Recovery (WAIR) MRI images and five manually segmented structures (substantia nigra (SN), subthalamic nucleus (STN), red nucleus (RN), mammillary body (MB) and mammillothalamic fascicle (MT-fa)) in 53 patients with severe Parkinson's disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!