Coupling magnetic particles with flocculants to enhance demulsification and separation of waste cutting emulsion for engineering applications.

J Environ Sci (China)

College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China. Electronic address:

Published: July 2021

Magnetic particles were coupled with a flocculant to enhance the demulsification and separation of waste cutting emulsions. The optimal magnetic particle size and critical magnetic field conditions were investigated to achieve large-scale engineering application of magnetic demulsification separation for waste cutting emulsion treatment. The micro-scale magnetic particles were found to show comparable effects to nano-scale magnetic particles on enhancing the demulsification and separation of cutting emulsions, which are beneficial for broadening the selectivity of low-cost magnetic particles. The critical magnetic separation region was determined to be an area 40 mm from the magnetic field source. Compared to the flocculant demulsification, the magnetic demulsification separation exhibited a significant advantage in accelerating flocs-water separation by decreasing the separation time of flocs from 180-240 min to less than 15 min, compressing the flocs by reducing the floc volume ratio from 60%-90% to lower than 20%, and showing excellent adaptability to the variable properties of waste cutting emulsions. Coupled with the design of the magnetic disk separator, continuous demulsification separation of the waste cutting emulsion was achieved at 1.0 t/hr for at least 10 hr to obtain clear effluent with 81% chemical oxygen demand removal and 89% turbidity reduction. This study demonstrates the feasibility of applying magnetic demulsification separation to large-scale continuous treatment of waste emulsion. Moreover, it addresses the flocs-water separation problems that occur in practical flocculant demulsification engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2020.12.036DOI Listing

Publication Analysis

Top Keywords

demulsification separation
28
magnetic particles
20
waste cutting
20
separation waste
16
cutting emulsion
12
magnetic
12
cutting emulsions
12
magnetic demulsification
12
separation
11
demulsification
9

Similar Publications

Nonionic Demulsifier for Smart Demulsification of Crude Oil Emulsion at Room and Moderate Temperatures.

ACS Omega

December 2024

Center for Integrative Petroleum Research, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

This study reports the demulsification activity of a newly developed nonionic demulsifier (NID) via the condensation of glycolic acid ethoxylate lauryl ether with amine. The demulsification performance of the developed NID was assessed under room and moderate temperatures (25 and 60 °C), while the concentrations of NID were varied from 100 to 700 ppm at both temperatures in order to observe their oil-water separation efficiency. The demulsification mechanism was expatiated by determining the viscosity and elastic modulus of emulsion in the presence and absence of the NID.

View Article and Find Full Text PDF

In this study, four different arginine-modified lignin composites (Lig-Arg-x) were synthesized via the Mannich reaction, followed by the preparation of Lig-Arg-x/FeO magnetic nanoparticles (NPs) using hydrothermal reduction. The magnetic particles were characterized, and their emulsification properties were investigated. The highest grafting degree was achieved at a 1:1 M ratio of arginine to lignin.

View Article and Find Full Text PDF

Enhanced oil/water separation using superhydrophobic nano SiO-modified porous melamine sponges.

Chemosphere

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China. Electronic address:

Article Synopsis
  • - Recent advancements in sponge materials for oil spill cleanup show promising results, utilizing silane coupling agents and nano-SiO₂ particles to enhance traditional melamine sponges.
  • - The modified “SiMAP” sponges exhibit impressive properties like a water contact angle of 162.6° and can absorb 40 to 90 times their weight in oil, achieving separation efficiencies over 98%.
  • - Their performance in oil-water separation is exceptional, with over 99.8% efficiency in continuous cycles, suggesting SiMAP sponges could be a major advancement in addressing oil pollution.
View Article and Find Full Text PDF

Preparation of hydrophobic and lipophilic carboxymethyl cellulose composite aerogel using ferrous ion/ persulfate and its directed oxidation for oil-water emulsion separation.

Carbohydr Polym

January 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China. Electronic address:

In particular, efficient oxidative demulsification is an effective method for oil-water separation. However, the inactivation of free radicals owing to the rapid release of transition metals is the main factor that reduces the effectiveness. In this study, a hydrophobic and lipophilic CP/SiO@Fe composite aerogel was prepared using carboxymethyl cellulose as substrate, polyvinyl alcohol as reinforcement, and SiO nanoparticles as hydrophobic modifier.

View Article and Find Full Text PDF

High-permeance nanocellulose/ZnO hybrid membranes with photo-induced anti-fouling performance for wastewater purification.

Carbohydr Polym

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Article Synopsis
  • * The addition of ZnO NPs improved the membrane's roughness and created nanochannels, resulting in an impressive water permeance of 5439.7 L·m·h·bar and effective rejection of particles larger than 20 nm and macromolecules over 100 kDa.
  • * The membrane's combination of superoleophobicity and photocatalytic self-cleaning capabilities addressed fouling issues, thus providing a promising method for treating organic wastewater with high filtration efficiency and performance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!