AI Article Synopsis

Article Abstract

In this paper we describe the genomic organization and sequence of the human T-cell receptor delta-chain diversity, joining, and constant genes. There is one delta-chain constant region gene (C delta) located approximately equal to 85 kilobases (kb) upstream of the alpha-chain constant region. The delta-chain constant region consists of four exons, whose organization is very similar to that of the C alpha exons, suggesting that C alpha and C delta may have arisen from a gene duplication event. The first exon encodes most of the extracellular constant domain, the second encodes a hinge-like region, and the third encodes the entire transmembrane segment and intracytoplasmic portion, whereas the last exon contains exclusively 3' untranslated sequences. Three joining segments, J delta 1, J delta 2, and J delta 3, are found approximately equal to 12, approximately equal to 5.7, and approximately equal to 3.4 kb upstream of the first exon of C delta. Two functional diversity gene segments, D delta 1 and D delta 2, which can be productively translated in all three reading frames, are found 1 and 9.6 kb upstream of J delta 1. The presence of two D delta with such potential for diversity may offset the limited repertoire of the J delta and V delta genes. The spacer distribution in the recombinational signals flanking D delta and J delta segments allows recombination with V alpha gene segments; however, examination of delta-chain messages does not indicate that this is the case, suggesting that the delta chain uses unique variable gene segments and raising the question as to the reasons for this phenomenon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC281912PMC
http://dx.doi.org/10.1073/pnas.85.16.6097DOI Listing

Publication Analysis

Top Keywords

delta delta
20
constant region
16
delta
15
gene segments
12
diversity joining
8
joining constant
8
human t-cell
8
delta-chain constant
8
segments delta
8
equal equal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!