Background: Burgeoning evidence highlights seminal roles for microglia in the pathogenesis of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). The receptor for advanced glycation end products (RAGE) binds ligands relevant to ALS that accumulate in the diseased spinal cord and RAGE has been previously implicated in the progression of ALS pathology.
Methods: We generated a novel mouse model to temporally delete Ager from microglia in the murine SOD1 model of ALS. Microglia Ager deficient SOD1 mice and controls were examined for changes in survival, motor function, gliosis, motor neuron numbers, and transcriptomic analyses of lumbar spinal cord. Furthermore, we examined bulk-RNA-sequencing transcriptomic analyses of human ALS cervical spinal cord.
Results: Transcriptomic analysis of human cervical spinal cord reveals a range of AGER expression in ALS patients, which was negatively correlated with age at disease onset and death or tracheostomy. The degree of AGER expression related to differential expression of pathways involved in extracellular matrix, lipid metabolism, and intercellular communication. Microglia display increased RAGE immunoreactivity in the spinal cords of high AGER expressing patients and in the SOD1 murine model of ALS vs. respective controls. We demonstrate that microglia Ager deletion at the age of symptomatic onset, day 90, in SOD1 mice extends survival in male but not female mice. Critically, many of the pathways identified in human ALS patients that accompanied increased AGER expression were significantly ameliorated by microglia Ager deletion in male SOD1 mice.
Conclusions: Our results indicate that microglia RAGE disrupts communications with cell types including astrocytes and neurons, intercellular communication pathways that divert microglia from a homeostatic to an inflammatory and tissue-injurious program. In totality, microglia RAGE contributes to the progression of SOD1 murine pathology in male mice and may be relevant in human disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8207569 | PMC |
http://dx.doi.org/10.1186/s12974-021-02191-2 | DOI Listing |
Theranostics
January 2025
Neurooncology Unit, Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.
J Ethnopharmacol
January 2025
Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China. Electronic address:
Ethnopharmacological Relevance: Cognitive dysfunction associated with diabetes, known as diabetic encephalopathy (DE), is a grave neurodegenerative condition triggered by diabetes, and persistent inflammation plays a vital role in its development. The renowned traditional Chinese medicine Huang-Lian-Jie-Du Decoction (HLJDD) is clinically proven to manage diabetes mellitus and Alzheimer's disease and is famous for its heat-clearing and detoxifying effects. However, the underlying mechanisms through which HLJDD affects DE remain to be elucidated.
View Article and Find Full Text PDFAMB Express
August 2024
Department of Life Science, National Taitung University, 369, Sec. 2, University Rd., Taitung, 95092, Taiwan, ROC.
Alzheimer's disease (AD) is the most common neurodegenerative disease, with symptoms appearing in the cerebral cortex and hippocampus. amyloid β peptide (Aβ) has been shown to deposit in the brain, causing oxidative stress and inflammation, leading to impaired memory and learning. Lactocaseibacillus fermentation can produce deglycosylated isoflavones with high physiological activity, which can scavenge free radicals, enhance total antioxidant capacity and inhibit oxidative inflammatory responses.
View Article and Find Full Text PDFZhejiang Da Xue Xue Bao Yi Xue Ban
June 2024
School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
Phosphodiesterases (PDE) are involved in the regulation of cellular physiological processes and neurological functions, including neuronal plasticity, synapto-genesis, synaptic transmission, memory formation and cognitive functions by catalyzing the hydrolysis of intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Many basic and clinical studies have shown that PDE4 inhibitors block or ameliorate the occurrence and development of central nervous system (CNS) diseases by inhibiting cAMP hydrolysis, increasing cAMP content and enhancing its downstream effects. PDE4 inhibitors have long-term potentiation effect, which can enhance phosphorylation of cAMP response element binding protein (CREB) and upregulate expression of memory related Arc genes in hippocampal neurons, thereby improving cognitive impairment and Alzheimer's disease-like symptoms.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
May 2024
Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
Cornuside has been discovered to improve learning and memory in AD mice, however, its underlying mechanism was not fully understood. In the present study, we established an AD mice model by intracerebroventricular injection of Aβ, which were treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated cognitive function of AD mice in series of behavioral tests, including Morris water maze test, nest building test, novel object recognition test and step-down test.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!