Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite continuous research on microplastics (MPs), studies exploring the complexity of interaction between MPs and other aqueous constituents in multi-solute systems are scarce. In this study, the uptake and release of nanoceria (CeNPs) by various polystyrene MPs (PSMPs) were investigated. Results showed that PSMPs in the presence of heavy metals (HMs) exhibited a substantially higher sorption affinity for isotropic charged CeNPs than PSMPs alone; this enhanced affinity was attributed to the formation of PSMP-HM-CeNP complexes. FE-SEM imaging reaffirmed that CeNP clusters adhered to PSMP surfaces in the presence of HMs. Such attachment varied dependent on valence state, atomic size of coexisting metal cations, surface texture, and functionalities of MPs. The HM-mediated complex formation on PSMP particles was suppressed at higher ionic strength because of competitive sorption and double-layer compression. Subsequent release of MP-adhered CeNPs and HMs varied significantly between aquatic media and various simulated digestive fluids, verifying the crucial role of MPs for transfer of engineered nanoparticles (ENPs) from natural environments into biota via ingestion of MPs and trophic transfer. Our results highlight the enhanced potential for MPs to accumulate and to transport ENPs when metallic contaminants are present, which adds to the current understanding of the environmental fate and adverse effects of MPs along with various waterborne contaminants in actual environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2021.117317 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!