Background: Intraplaque neovascularization (IPN) in advanced lesions of the carotid artery has been linked to plaque progression and risk of rupture. Quantitative measurement of IPN may provide a more powerful tool for the detection of such "vulnerable" plaque than the current visual scoring method. The aim of this study was to develop a phantom platform of a neovascularized atherosclerotic plaque within a carotid artery to assess new methods of quantifying IPN.
Methods: Ninety-two synthetic plaque models with various IPN architectures representing different ranges of IPN scoring were created and assessed using contrast-enhanced ultrasound. Intraplaque neovascularization volume was calculated from contrast infiltration in B mode. The plaque models were used to develop a testing platform for IPN quantification. A neovascularized enhancement ratio (NER) was calculated using commercially available software. The plaque model NERs were then compared to human plaque NERs (n = 42) to assess score relationship. Parametric mapping of dynamic intensity over time was used to differentiate IPN from calcified plaque regions.
Results: A positive correlation between NER and IPN volume (rho = 0.45; P < .0001) was found in the plaque models. Enhancement of certain plaque model types showed that they resembled human plaques, with visual grade scores of 0 (NER mean difference = 1.05 ± SE 2.45; P = .67), 1 (NER mean difference = 0.22 ± SE 3.26; P = .95), and 2 (NER mean difference = -0.84 ± SE 3.33; P = .80). An optimal cutoff for NER (0.355) identified grade 2 human plaques with a sensitivity of 95% and specificity of 91%.
Conclusions: We developed a carotid artery model of neovascularized plaque and established a quantitative method for IPN using commercially available technology. We also developed an analysis method to quantify IPN in calcified plaques. This novel tool has the potential to improve clinical identification of vulnerable plaques, providing objective measures of IPN for cardiovascular risk assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.echo.2021.06.003 | DOI Listing |
J Imaging Inform Med
January 2025
Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Seoul, 05505, Republic of Korea.
Although the relationships between basic clinical parameters and white matter hyperintensity (WMH) have been studied, the associations between vascular factors and WMH volume in general populations remain unclear. We investigated the associations between clinical parameters including comprehensive vascular factors and WMH in two large general populations. This retrospective, cross-sectional study involved two populations: individuals who underwent general health examinations at the Asan Medical Center (AMC) and participants from a regional cohort, the Korean Genome and Epidemiology Study (KoGES).
View Article and Find Full Text PDFKidney Dis (Basel)
November 2024
Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, PR China.
Introduction: This study aims to explore the contribution of neutrophil extracellular traps (NETs) to kidney stones.
Methods: The microarray data from GSE73680 and bioinformatic analysis were applied to identify differentially expressed genes in patients with kidney stones. A rat model of kidney stones was established through ethylene glycol and ammonium chloride administration.
Alcohol Clin Exp Res (Hoboken)
January 2025
Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA.
Background: During the coronavirus disease 2019 (COVID-19) pandemic, there was a marked increase in alcohol consumption. COVID-19 superimposed on underlying liver disease notably worsens the outcome of many forms of liver injury. The goal of a current pilot study was to test the dual exposure of alcohol and COVID-19 infection in an experimental animal model of alcohol-associated liver disease (ALD).
View Article and Find Full Text PDFZool Res
January 2025
Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea. E-mail:
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features, including amyloid-β plaques, neurofibrillary tangles, and reactive astrogliosis. Developing effective diagnostic, preventative, and therapeutic strategies for AD necessitates the establishment of animal models that accurately recapitulate the pathophysiological processes of the disease. Existing transgenic mouse models have significantly contributed to understanding AD pathology but often fail to replicate the complexity of human AD.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Pharmacy, the Second Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China.
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and the aggregation of tau protein, resulting in intense memory loss and dementia. Diabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus, which is associated with decreased cognitive function and impaired memory. A growing body of literature emphasize the involvement of microglia in AD and DACD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!