Objectives: There is an urgent need to ameliorate the possibilities of transporting reconstituted mRNA vaccines from the centralized preparation centres to the vaccination sites to improve the efficiency of the vaccination campaign against coronavirus disease 2019 (COVID-19). We have analysed the integrity of the Pfizer-BioNTech and Moderna vaccines under different movement conditions to provide information that may improve the distribution of vaccines to the target population.
Methods: Syringes of reconstituted Pfizer-BioNTech or Moderna COVID-19 vaccines were prepared in a laminar flow chamber to be subjected to a stability analysis in order to evaluate the impact of movement on mRNA integrity. RNA integrity was checked by the lack of RNA peaks under the original mRNA peak in the electropherogram resulting from potential fragments from RNA degradation. Samples were then exposed for 180 min at room temperature (21 ± 1°C, 55 ± 10% humidity) under different movement conditions.
Results: We report that the integrity of the mRNA in the reconstituted COVID-19 vaccines after continuous moderate movement at room temperature is maintained for at least 3 hours, with values of fluorescence units (FU) under the original mRNA peak of 0.38 ± 0.06 in the Pfizer-BioNTech vaccine and 0.96 ± 1.18 FU in the Moderna vaccine, equal to the values obtained without movement (0.36 ± 0.08 FU in the Pfizer-BioNTech and 1.12 ± 0.19 FU in the Moderna). In contrast, the integrity of these vaccines exposed to repeated Vortex shaking was significantly impaired (p < 0.001) with values under the original mRNA peak of 1.34 ± 0.31 FU for the Pfizer-BioNTech and 5.03 ± 1.16 FU for the Moderna samples.
Conclusions: The stability of these reconstituted vaccines reported here may improve the efficiency of the ground transportation and distribution of the vaccines, which may lead to shorter and more homogeneous vaccinations in cities and rural areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196234 | PMC |
http://dx.doi.org/10.1016/j.cmi.2021.06.007 | DOI Listing |
Immunol Rev
December 2024
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants.
View Article and Find Full Text PDFNeurol Sci
December 2024
Eastern Health Clinical School, Monash University, Box Hill Hospital, Melbourne, VIC, 3128, Australia.
Introduction/aims: Previous studies have demonstrated high morbidity and mortality in patients with myasthenia gravis (MG) who acquired COVID-19. We aimed to identify the impact of the pandemic on MG disease control, treatment and quality of life.
Methods: A prospective observational cohort study was conducted to identify the impact of the COVID-19 pandemic on Australian patients with MG.
Sci Rep
December 2024
Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico.
Understanding the dynamics of antibody responses following vaccination and SARS-CoV-2 infection is important for informing effective vaccination strategies and other public health interventions. This study investigates SARS-CoV-2 antibody dynamics in a Puerto Rican cohort, analyzing how IgG levels vary by vaccination status and previous infection. We assess waning immunity and the distribution of hybrid immunity with the aim to inform public health strategies and vaccination programs in Puerto Rico and similar settings.
View Article and Find Full Text PDFActa Biomater
December 2024
National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:
Effective vaccination is crucial for intervening in the COVID-19 pandemic. However, with the continuous mutation of the SARS-CoV-2, existing vaccines including subunit vaccines cannot effectively prevent virus infections. Hence, there is an urgent need to enhance the immunogenicity of existing vaccines to induce a more potent and durable immune response.
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Medicine, Department of Medical Biochemistry and Molecular Biology, Fayoum University, Fayoum, Egypt.
Background: The SARS-CoV-2 virus's frequent mutations have made disease control with vaccines and antiviral drugs difficult; as a result, there is a need for more effective coronavirus drugs. Therefore, detecting the expression of various diagnostic biomarkers, including ncRNA in SARS-CoV2, implies new therapeutic strategies for the disease.
Aim: Our study aimed to measure NEAT-1, miR-374b-5p, and IL6 in the serum of COVID-19 patients, demonstrating the correlation between target genes to explore the possible relationship between them.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!