Urolithiasis is a common urological disease, and treatment strategy options vary between different stone types. However, accurate detection of stone composition can only be performed in vitro. The management of infection stones is particularly challenging with yet no effective approach to pre-operatively identify infection stones from non-infection stones. Therefore, we aimed to develop a radiomic model for preoperatively identifying infection stones with multicenter validation. In total, 1198 eligible patients with urolithiasis from three centers were divided into a training set, an internal validation set, and two external validation sets. Stone composition was determined by Fourier transform infrared spectroscopy. A total of 1316 radiomic features were extracted from the pre-treatment Computer Tomography images of each patient. Using the least absolute shrinkage and selection operator algorithm, we identified a radiomic signature that achieved favorable discrimination in the training set, which was confirmed in the validation sets. Moreover, we then developed a radiomic model incorporating the radiomic signature, urease-producing bacteria in urine, and urine pH based on multivariate logistic regression analysis. The nomogram showed favorable calibration and discrimination in the training and three validation sets (area under the curve [95% confidence interval], 0.898 [0.840-0.956], 0.832 [0.742-0.923], 0.825 [0.783-0.866], and 0.812 [0.710-0.914], respectively). Decision curve analysis demonstrated the clinical utility of the radiomic model. Thus, our proposed radiomic model can serve as a non-invasive tool to identify urinary infection stones in vivo, which may optimize disease management in urolithiasis and improve patient prognosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.kint.2021.05.031 | DOI Listing |
J Ultrasound
January 2025
, Costa Contina street n. 19, 66054, Vasto, Chieti, Italy.
Aim: o point out how novel analysis tools of AI can make sense of the data acquired during OL and OC diagnosis and treatment in an effort to help improve and standardize the patient pathway for these disease.
Material And Methods: ultilizing programmed detection of heterogeneus OL and OC habitats through radiomics and correlate to imaging based tumor grading plus a literature review.
Results: new analysis pipelines have been generated for integrating imaging and patient demographic data and identify new multi-omic biomarkers of response prediction and tumour grading using cutting-edge artificial intelligence (AI) in OL and OC.
Abdom Radiol (NY)
January 2025
Department of Hepato-Biliary-Pancreatic Surgery, Huadong Hospital affiliated to Fudan University, Shanghai, China.
Background: The prognostic prediction of pancreatic ductal adenocarcinoma (PDAC) remains challenging. This study aimed to develop a radiomics model to predict Ki-67 expression status in PDAC patients using radiomics features from dual-phase enhanced CT, and integrated clinical characteristics to create a radiomics-clinical nomogram for prognostic prediction.
Methods: In this retrospective study, data were collected from 124 PDAC patients treated surgically at a single center, from January 2017 to March 2023.
Abdom Radiol (NY)
January 2025
The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China, Chengdu, China.
Background: Perineural invasion (PNI) in colorectal cancer (CRC) is a significant prognostic factor associated with poor outcomes. Radiomics, which involves extracting quantitative features from medical imaging, has emerged as a potential tool for predicting PNI. This systematic review and meta-analysis aimed to evaluate the diagnostic accuracy of radiomics models in predicting PNI in CRC.
View Article and Find Full Text PDFAbdom Radiol (NY)
January 2025
Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital (The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine), Shenzhen, China.
Purpose: Intra-pancreatic fat deposition (IPFD) is closely associated with the onset and progression of type 2 diabetes mellitus (T2DM). We aimed to develop an accurate and automated method for assessing IPFD on multi-echo Dixon MRI.
Materials And Methods: In this retrospective study, 534 patients from two centers who underwent upper abdomen MRI and completed multi-echo and double-echo Dixon MRI were included.
Objectives: Combining Computed Tomography (CT) intuitive anatomical features with Three-Dimensional (3D) CT multimodal radiomic imaging features to construct a model for assessing the aggressiveness of pancreatic neuroendocrine tumors (pNETs) prior to surgery.
Methods: This study involved 242 patients, randomly assigned to training (170) and validation (72) cohorts. Preoperative CT and 3D CT radiomic features were used to develop a model predicting pNETs aggressiveness.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!