Regionalization through the analysis of species groups offers important advantages in conservation biology, compared to the single taxon approach in areas of high species richness. We use a systematic framework for biogeographic regionalization at a regional scale based on species turnover and environmental drivers (climate variables and soil properties) mainly of herbaceous plant species richness. To identify phytogeographic regions in the Balsas Depression (BD), we use Asteraceae species, a family widely distributed in Seasonally Dry Tropical Forest (SDTF) and the most diverse of the vascular plants in Mexico. Occurrence records of 571 species were used to apply a quantitative analysis based on the species turnover, the rate of changes in their composition between sites (β-Simpson index) and the analysis of the identified environmental drivers. Also, the environmental predictors that influence species richness in the SDTF were determined with a redundancy analysis. We identified and named two phytogeographic districts within the SDTF of the BD (Upper Balsas and Lower Balsas). According to the multi-response permutation procedure, floristic composition of the two districts differs significantly, and the richness of exclusive species in Upper Balsas was higher (292 species) than in the Lower Balsas (32 species). The proportion of Mg and Ca in the soil and the precipitation of the driest three-month period were the environmental factors with greatest positive influence on species richness. The division of geographic districts subordinated to the province level, based on diverse families such as Asteraceae, proved to be appropriate to set up strategies for the conservation of the regional flora, since at this scale, variation in species richness is more evident. Our findings are consistent with a growing body of biogeographic literature that indicates that the identification of smaller biotic districts is more efficient for the conservation of biodiversity, particularly of endemic or rare plants, whose distribution responds more to microhabitats variation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205180 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253152 | PLOS |
Ecol Evol
January 2025
Programa de Pós-Graduação em Ecologia Instituto Nacional de Pesquisas da Amazônia Manaus Brazil.
The growth of cities is one of the main direct and indirect factors responsible for the loss of native vegetation cover. Urbanization directly affects the biological communities inhabiting forest remnants inserted in cities, compromising the maintenance of urban and natural ecosystems. By understanding the effects of landscape transformation due to urbanization, we can have insights regarding the distribution of land uses that allow a proper maintenance of the urban ecosystems.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Berlin, Germany.
Agroforestry systems are multifunctional land-use systems that promote soil life. Despite their large potential spatio-temporal complexity, the majority of studies that investigated soil organisms in temperate cropland agroforestry systems focused on rather non-complex systems. Here, we investigated the topsoil and subsoil microbiome of two complex and innovative alley cropping systems: an agrosilvopastoral system combining poplar trees, crops, and livestock and a syntropic agroforestry system combining 35 tree and shrub species with forage crops.
View Article and Find Full Text PDFConserv Biol
January 2025
Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA.
Marine protected areas (MPAs) are widely implemented tools for long-term ocean conservation and resource management. Assessments of MPA performance have largely focused on specific ecosystems individually and have rarely evaluated performance across multiple ecosystems either in an individual MPA or across an MPA network. We evaluated the conservation performance of 59 MPAs in California's large MPA network, which encompasses 4 primary ecosystems (surf zone, kelp forest, shallow reef, deep reef) and 4 bioregions, and identified MPA attributes that best explain performance.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2025
Department of Zoology, University of Cambridge, Cambridge, UK.
Human-driven habitat loss is recognized as the greatest cause of the biodiversity crisis, yet to date we lack robust, spatially explicit metrics quantifying the impacts of anthropogenic changes in habitat extent on species' extinctions. Existing metrics either fail to consider species identity or focus solely on recent habitat losses. The persistence score approach developed by Durán .
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
Background: The St-genome-sharing taxa are highly complex group of the species with the St nuclear genome and monophyletic origin in maternal lineages within the Triticeae, which contains more than half of polyploid species that distributed in a wide range of ecological habitats. While high level of genetic heterogeneity in plastome DNA due to a reticulate evolutionary event has been considered to link with the richness of the St-genome-sharing taxa, the relationship between the dynamics of diversification and molecular evolution is lack of understanding.
Results: Here, integrating 106 previously and 12 newly sequenced plastomes representing almost all previously recognized genomic types and genus of the Triticeae, this study applies phylogenetic reconstruction methods in combination with lineage diversification analyses, estimate of sequence evolution, and gene expression to investigate the dynamics of diversification in the tribe.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!