A formation of second-order non-Hermitian degeneracies, called exceptional points (EPs), in a chaotic oval-shaped dielectric microdisk is studied. Different symmetric optical modes localized on a stable period-3 orbit coalesce to form chiral EPs. Unlike a circular microdisk perturbed by two scatterers (CTS), our proposed system requires only one scatterer to build chiral EPs. The scatterer positions for counterpropagating EP modes are far distant from one another and almost steady against varying scatterer sizes in contrast to the CTS case. Our results can contribute to establishing a more solid platform for EP-based-device applications with flexibility and easy feasibility in obtaining EPs.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.426470DOI Listing

Publication Analysis

Top Keywords

exceptional points
8
chiral eps
8
rayleigh scatterer-induced
4
scatterer-induced steady
4
steady exceptional
4
points stable-island
4
stable-island modes
4
modes deformed
4
deformed optical
4
optical microdisk
4

Similar Publications

Machine Learning Boosted Entropy-Engineered Synthesis of CuCo Nanometric Solid Solution Alloys for Near-100% Nitrate-to-Ammonia Selectivity.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China.

Nanometric solid solution alloys are utilized in a broad range of fields, including catalysis, energy storage, medical application, and sensor technology. Unfortunately, the synthesis of these alloys becomes increasingly challenging as the disparity between the metal elements grows, due to differences in atomic sizes, melting points, and chemical affinities. This study utilized a data-driven approach incorporating sample balancing enhancement techniques and multilayer perceptron (MLP) algorithms to improve the model's ability to handle imbalanced data, significantly boosting the efficiency of experimental parameter optimization.

View Article and Find Full Text PDF

Algae, widely as a valuable marine biomass, are appreciated globally for their unique chemical compositions and exceptional nutritional benefits. Scientists are increasingly focusing on valorizing algae biomass to recover polysaccharides and bioactive extracts. Conventional methods commonly used to extract bioactive compounds have several limitations.

View Article and Find Full Text PDF

We have investigated the effect of length and chemical structure of phospholipid tails on the spontaneous formation of unilamellar liposomal vesicles in binary solute mixtures of cationic drug surfactant and zwitterionic phosphatidylcholine phospholipids. Binary drug surfactant-phospholipid mixtures with four different phospholipids with identical headgroups (two saturated phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 14:0) and 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, 16:0), and two unsaturated lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, 18:1) and 1,2-Dierucoyl-sn-Glycero-3-Phosphatidylcholine (DEPC, 22:1)) combined with two different tricyclic antidepressant drugs (amitriptyline hydrochloride (AMT) and doxepin hydrochloride (DXP)) have been investigated with small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). We observe a conspicuous impact of phospholipid tail structure on both micelle-to-vesicle transition point and vesicle size.

View Article and Find Full Text PDF

In recent years, cavity optomagnonics has received considerable research interest, and the notions drawn from non-Hermitian physics have also attracted attention. Based on Faraday effect and Cotton-Mouton effect, we theoretically propose a scheme to realize exceptional point (EP) in a cavity optomagnonic system. The scheme relies on Brillouin scattering (BLS), i.

View Article and Find Full Text PDF

Harmful algal bloom prediction using empirical dynamic modeling.

Sci Total Environ

December 2024

NOAA, Global Systems Laboratory, Boulder, CO, USA; National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA. Electronic address:

Harmful Algal Blooms (HABs) can originate from a variety of reasons, including water pollution coming from agriculture, effluent from treatment plants, sewage system leaks, pH and light levels, and the consequences of climate change. In recent years, HAB events have become a serious environmental problem, paralleling population growth, agricultural development, increasing air temperatures, and declining precipitation. Hence, it is crucial to identify the mechanisms responsible for the formation of HABs, accurately assess their short- and long-term impacts, and quantify their variations based on climate projections for developing accurate action plans and effectively managing resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!