Pinus thunbergii Parl., known as black pine, is widely distributed all over China. This pine variety can prevent soil desertification and promote soil conservation and is excellent for constructing fast-growing forests and shelter belts. The timber of this species can be used for infrastructure construction and furniture production. In August 2020, needle blight symptoms were found on several trees of black pine in Sichuan Province, China. Further surveys showed that these symptoms are common while the disease incidence is less than 30% which indicated the severity of the disease is mild. The tips of old needles first turn grayish green and developed into brown bands ranging from 1 to 2 mm. To determine the pathogen, 20 needle samples with typical symptoms were disinfected with 75% alcohol, and sections of the tissue were cut from joints of diseased and healthy tissues (visually healthy) with a sterilized scalpel, surface sterilized for 45 seconds in 75% alcohol, soaked for 90 seconds in 1.5% NaCIO, rinsed in sterilized water and dried. Small cut tissues were placed on potato dextrose agar (PDA) at 25℃ for 10 days. Pure cultures were obtained by monosporic isolation. The colonies initially appeared white to cream, yeast-like, and later turned to pink and remained at least 10 days. Conidia were hyaline, smooth-walled, single-celled, and ellipsoidal with variable shape and size, 7.5 to 16 × 3.5 to 7 µm (Zalar et al. 2008). DNA was extracted from the mycelium of the isolate by the cetyltriethylammonium bromide (CTAB) method and amplified through polymerase chain reaction (PCR) with the internal transcribed spacer (ITS) region of rDNA and partial β-tubulin genes of a representative isolate (SC05) were amplified using the ITS1/ITS4 and Bt2a/Bt2b primer pairs, respectively(Wu et al. 2017). The sequences submitted to GenBank (Accession Nos. MW228368 for ITS and MW256762 for β-tubulin) showed high similarity with BLAST sequences of Aureobasidium pullulans (ITS, KR704881 [100%]; β-tubulin, MT671934 [99.49%]). For the pathogenicity test, a conidial suspension was prepared with a concentration of 2.0 × 107 conidia/ml. The suspension was sprayed onto 3 annual seedlings' needles, and the control was sprayed with sterile water. Inoculated and non-inoculated plants were kept in humid chambers in a glasshouse. After 10 days, typical symptoms appeared on inoculated needles, whereas control needles remained symptomless. The fungus, A. pullulans, was reisolated from those lesions, confirming Koch's postulates. No symptoms were observed on control plants. Aureobasidium pullulans, a ubiquitous saprophytic fungus on many fruits and very rarely reported to cause disease on pine needles. Only reported invasion of Ozone-injured needles in P. strobus (Costonis and Sinclair 1972) and needles damaged by acid rain in P. sylvestris (Ranta 1990). To our knowledge, this is the first report of brown spot needle blight on P. thunbergii caused by A. pullulans in China. The disease represents a threat to pine manufactures and more research on the pathogenesis and management is needed. .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-11-20-2435-PDN | DOI Listing |
Plant Dis
December 2024
Iowa State University, Horticulture, 2206 Osborne Drive, Ames, Iowa, United States, 50011;
Highbush blueberry (Vaccinium corymbosum) is an important fruit crop for pick-your-own agritourism farms in the Midwest. Declining or diseased plants are a major concern for pick-your-own farms, as consumers prioritize healthy plants and organic practices (Norby and Retallick 2012). In August 2023, leaf spot and dieback symptoms were observed sporadically on the current year's growth throughout an organic berry agritourism farm in Eastern Iowa.
View Article and Find Full Text PDFPlant Dis
November 2024
Colorado State University, Department of Agricultural Biology, 1177 Campus Delivery, Fort Collins, Colorado, United States, 80523;
Plant Dis
November 2024
Guangxi Botanical Garden of Medicinal Plants, Guangxi Key Laboratory of for High Quality Formation and Utilization of Dao-Di Herbs, Nanning, China;
Plant Dis
October 2024
Hunan University of Science and Technology, Xiangtan, Hunan, China;
Virus Res
December 2024
Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!