Glycosylation of a Nonfibrillizing Appendage Alters the Self-Assembly Pathway of a Synthetic β-Sheet Fibrillizing Peptide.

J Phys Chem B

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

Published: June 2021

Owing to their biocompatibility and biodegradability, short synthetic peptides that self-assemble into elongated β-sheet fibers (i.e., peptide nanofibers) are widely used to create biomaterials for diverse medical and biotechnology applications. Glycosylation, which is a common protein post-translational modification, is gaining interest for creating peptide nanofibers that can mimic the function of natural carbohydrate-modified proteins. Recent reports have shown that glycosylation can disrupt the fibrillization of natural amyloid-forming peptides. Here, using transmission electron microscopy, fluorescence microscopy, and thioflavin T spectroscopy, we show that glycosylation at a site external to the fibrillization domain can alter the self-assembly pathway of a synthetic fibrillizing peptide, NSGSGQQKFQFQFEQQ (NQ11). Specifically, an NQ11 variant modified with N-linked -acetylglucosamine, N(GlcNAc)SGSG-Q11 (GQ11), formed β-sheet nanofibers more slowly than NQ11 in deionized water (pH 5.8), which correlated to the tendency of GQ11 to form a combination of short fibrils and nonfibrillar aggregates, whereas NQ11 formed extended nanofibers. Acidic phosphate buffer slowed the rate of GQ11 fibrillization and altered the morphology of the structures formed yet had no effect on NQ11 fibrillization rate or morphology. The buffer ionic strength had no effect on the fibrillization rate of either peptide, while the diphosphate anion had a similar effect on the rate of fibrillization of both peptides. Collectively, these data demonstrate that a glycan moiety located external to the β-sheet fibrillizing domain can alter the pH-dependent self-assembly pathway of a synthetic peptide, leading to significant changes in the fibril mass and morphology of the structures formed. These observations add to the understanding of the effect of glycosylation on peptide self-assembly and should guide future efforts to develop biomaterials from synthetic β-sheet fibrillizing glycopeptides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191660PMC
http://dx.doi.org/10.1021/acs.jpcb.1c02083DOI Listing

Publication Analysis

Top Keywords

self-assembly pathway
12
pathway synthetic
12
β-sheet fibrillizing
12
synthetic β-sheet
8
fibrillizing peptide
8
peptide nanofibers
8
domain alter
8
morphology structures
8
structures formed
8
fibrillization rate
8

Similar Publications

Fe diaspora titanium dioxide and graphene: A study of conductive powder materials and coating applications.

J Colloid Interface Sci

January 2025

Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China. Electronic address:

Developing new conductive primers to ensure electrostatic spraying is crucial in response to the call for lightweight production of new energy vehicles. We report a stabilized material, Fe-T/G, of Fe-doped TiO composite graphene synthesized by a simple hydrothermal and electrostatic self-assembly method. The resistivity decreases from 0.

View Article and Find Full Text PDF

With their ability to self-assemble spontaneously into well-defined nanoscale morphologies, block copolymer (BCP) thin films are a versatile platform to fabricate functional nanomaterials. An important challenge to wider deployment of BCPs in nanofabrication is combining precise control over the nanoscale domain orientation in BCP assemblies with scalable deposition techniques that are applicable to large-area, curved, and flexible substrates. Here, we show that spray-deposited smooth films of a nominally disordered BCP exhibit latent orientations, which can be prescriptively selected by controlling solvent evaporation during spray casting.

View Article and Find Full Text PDF

Fine-Tuning of the Sequential Self-Assembly of Entangled Polyhedra by Exploiting the Side-Chain Effect.

Chem Asian J

December 2024

Tokyo College, U-Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa-shi, Chiba, 277-0882, Japan.

The control of the sequential self-assembly processes of highly entangled (AgL) (n=2,4,6,8) and AgL coordination polyhedra using side-chain effects was studied via the introduction of linear or branched side chains into the tripodal ligands. In addition to changes in the intermediate polyhedral species affording the multi- pathway process, disruption of the kinetic control of the sequential self-assembly was observed, thus demonstrating the utility of steric control for the construction of 3D-entangled molecular materials on the 5 nm scale with high molecular complexity.

View Article and Find Full Text PDF

This review highlights recent progress in utilizing iron oxide nanoparticles (IONPs) as a safer alternative to gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI). It consolidates findings from multiple studies, discussing current T contrast agents (CAs), the synthesis techniques for IONPs, the theoretical principles for designing IONP-based MRI CAs, and the key factors that impact their T contrast efficacy, such as nanoparticle size, morphology, surface modifications, valence states, and oxygen vacancies. Furthermore, we summarize current strategies to achieve IONP-based responsive CAs, including self-assembly/disassembly and distance adjustment.

View Article and Find Full Text PDF

The well-known inhibitory strength of 3d metal Schiff base complexes against urease enzymes has long been acknowledged, but their untapped potential to act as ureolytic mimics of active metallobiosites remained unexplored. To break the new ground, we present pyrrolidine-based mononuclear Ni(II)-azide complex {[NiL(HL)(N)]·1.5(HO)} using the N,N,O donor ligand, namely ()-4-bromo-2-(((2-(pyrrolidin-1-yl)ethyl)imino)methyl)phenol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!