Understanding the adaptive changes in maize kernels under high-temperature stress during grain formation stage is critical for developing strategies to alleviate the negative effects on yield and quality. In this study, we subjected waxy maize (Zea mays L. sinensis Kulesh) to four different temperature regimes from 1-15 d after pollination (DAP), namely normal day/normal night (control), hot day/normal night, normal day/hot night, and hot day/hot night. Compared to the control, the three high-temperature treatments inhibited kernel development and starch deposition. To understand how the kernels responded to high-temperature stress, their transcriptomes, proteomes, and metabolomes were studied at 10 DAP and 25 DAP. This showed that genes and proteins related to kernel development and starch deposition were up- and down-regulated, respectively, at 10 DAP, but this pattern was reversed at 25 DAP. Metabolome profiling under high-temperature stress showed that the accumulation patterns of metabolites at 10 DAP and 25 DAP were inversely related. Our multiomics analyses indicated that the response to high-temperature stress of signaling pathways mediated by auxin, abscisic acid, and salicylic acid was more active at 10 DAP than at 25 DAP. These results confirmed that high-temperature stress during early kernel development has a carry-over effect on later development. Taken together, our multiomics profiles of developing kernels under high-temperature stress provide insights into the processes that underlie maize yield and quality under high-temperature conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erab286DOI Listing

Publication Analysis

Top Keywords

high-temperature stress
24
kernel development
16
dap dap
12
dap
9
stress grain
8
grain formation
8
formation stage
8
waxy maize
8
high-temperature
8
kernels high-temperature
8

Similar Publications

Selective breeding is a potent method for developing strains with enhanced traits. This study compared the growth performance and stress responses of the genetically improved Abbassa Nile tilapia strain (G9; GIANT-G9) with a local commercial strain over 12 weeks, followed by exposure to stressors including high ammonia (10 mg TAN/L), elevated temperature (37 °C), and both for three days. The GIANT-G9 showed superior growth, including greater weight gain, final weight, length gain, specific growth rate, and protein efficiency ratio, as well as a lower feed conversion ratio and condition factor compared to the commercial strain.

View Article and Find Full Text PDF

Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold.

iScience

January 2025

Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.

This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process.

View Article and Find Full Text PDF

High temperatures can impede the growth and development of soybean plants, resulting in decreased yield and seed quality. Heat-induced damage can be mitigated by adjusting sowing date and selecting genotypes that are suitable for cultivation in hot climates. A 2-year (2017-2018) field experiment was conducted at Safiabad Agricultural and Natural Resources Research and Education Center, employing a split-plot design with three replications.

View Article and Find Full Text PDF

Choosing the appropriate reference genes for quantitative real-time PCR (qRT-PCR) is very important for accurately evaluating expression of target genes. L. is a widely used horticultural plant with high ornamental value, which also shows a strong ability to tolerate abiotic stresses.

View Article and Find Full Text PDF

Femtosecond photoacoustic detection is a powerful all-optical technique for characterizing metal nanofilms. However, the lack of accurate descriptions of the temperature-dependent optical properties of metal nanofilms during ultrafast thermal processes hinders the deep understanding of this dynamic behavior, leading to compromised measurement accuracy. To address this, we developed Critical Point Models (CPMs) for copper and AlCu nanofilms to describe their dynamic optical properties during photoacoustic testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!