Photophysical properties of -methyl and -acetyl substituted alloxazines: a theoretical investigation.

Phys Chem Chem Phys

Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, Regensburg, 93053, Germany.

Published: June 2021

The electronic structure and photophysical properties of a series of N-methyl and N-acetyl substituted alloxazines (AZs) were investigated with extensive density functional theory (DFT) and time-dependent density functional theory (TD-DFT) based calculations. We showed that non-radiative decays from the lowest singlet and triplet excited states of these AZs are dominant over their radiative counterparts. The fast non-radiative decays of the excited AZs can be attributed to the energy consumption (Ereorg) through structural reorganization facilitated by the intrinsic normal modes of the alloxazine framework, as well as their coupling with those of the functional groups. Substitution with functional groups may lead to further perturbation of the electronic structure of the AZ chromophore, which may enhance intersystem crossing with the ππ* states of the AZs. Due to the different bonding of N1 and N3 within the alloxazine framework, substitution may result in AZs with different photophysical properties. Specifically, functionalization at N1 may help in maintaining or even reducing Ereorg and would promote the absorption and radiative decay from the excited AZs. However, the strong coupling of the vibrational modes of acetyl at N3 with the intrinsic normal modes of the alloxazine framework would contribute significantly to Ereorg, and benefit the non-radiative decay of the excited AZs. We expect that the findings would pave the way for rational design of novel AZs with extraordinary photophysical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp01201kDOI Listing

Publication Analysis

Top Keywords

photophysical properties
16
excited azs
12
alloxazine framework
12
substituted alloxazines
8
electronic structure
8
azs
8
density functional
8
functional theory
8
non-radiative decays
8
states azs
8

Similar Publications

Using HBmito Crimson to Observe Mitochondrial Cristae Through STED Microscopy.

Bio Protoc

January 2025

Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University. Baoding, China.

Mitochondrial cristae, formed by folding the mitochondrial inner membrane (IM), are essential for cellular energy supply. However, the observation of the IM is challenging due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vitro probes specifically targeting the IM. Here, we describe a detailed imaging protocol for the mitochondrial inner membrane using the Si-rhodamine dye HBmito Crimson, which has excellent photophysical properties, to label live cells for imaging via stimulated emission depletion (STED) microscopy.

View Article and Find Full Text PDF

Finely Tailored Conjugated Small Molecular Nanoparticles for Near-Infrared Biomedical Applications.

Research (Wash D C)

January 2025

Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.

Near-infrared (NIR) phototheranostics (PTs) show higher tissue penetration depth, signal-to-noise ratio, and better biosafety than PTs in the ultraviolet and visible regions. However, their further advancement is severely hindered by poor performances and short-wavelength absorptions/emissions of PT agents. Among reported PT agents, conjugated small molecular nanoparticles (CSMNs) prepared from D-A-typed photoactive conjugated small molecules (CSMs) have greatly mediated this deadlock by their high photostability, distinct chemical structure, tunable absorption, intrinsic multifunctionality, and favorable biocompatibility, which endows CSMNs with more possibilities in biological applications.

View Article and Find Full Text PDF

Over the last five decades, diimine rhenium(I) tricarbonyl complexes have been extensively investigated due to their remarkable and widely tuned photophysical properties. These systems are regarded as attractive targets for design functional luminescent materials and performing fundamental studies of photoinduced processes in transition metal complexes. This review summarizes the latest developments concerning Re(I) tricarbonyl complexes bearing donor-acceptor (D-A) and donor-π-acceptor (D-π-A) ligands.

View Article and Find Full Text PDF

Unusual high fluorescence of a 7,7'-diazaisoindigo derivative: A photophysical study.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain. Electronic address:

7,7'-Diazaisoindigos are π-conjugated compounds but with poor luminescence properties. Their poor luminescence is generally attributed to the twisting around the central C-C bond in the excited state which favors non-radiative decay. We have found an unusual high fluorescence quantum yield (Φ ≈ 15 %) in a N,N‑Octyl-7,7'-diazaisoindigo derivative incorporating two triphenylamine (TPA) subunits at 5,5'-positions (called compound 12).

View Article and Find Full Text PDF

The synthesis of ethylamine-based perovskites has emerged to attempt to replace the lead in lead-based perovskites for the alkaline earth elements barium and strontium, introducing chloride halide to prepare the perovskites in solar cell technology. X-ray diffraction studies were conducted, and EXPO2014 software was utilized to resolve the structure. Chemical characterization was performed using Fourier transform infrared spectroscopy, photophysical properties were analyzed through ultraviolet-visible spectroscopy, and photoluminescence properties were determined to confirm the perovskite characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!