Establishment of H3K9me3-dependent heterochromatin during embryogenesis in .

Elife

Department of Integrative Biology, University of California, Berkeley, Berkeley, United States.

Published: June 2021

Heterochromatin is a key architectural feature of eukaryotic genomes crucial for silencing of repetitive elements. During embryonic cellularization, heterochromatin rapidly appears over repetitive sequences, but the molecular details of how heterochromatin is established are poorly understood. Here, we map the genome-wide distribution of H3K9me3-dependent heterochromatin in individual embryos of at precisely staged developmental time points. We find that canonical H3K9me3 enrichment is established prior to cellularization and matures into stable and broad heterochromatin domains through development. Intriguingly, initial nucleation sites of H3K9me3 enrichment appear as early as embryonic stage 3 over transposable elements (TEs) and progressively broaden, consistent with spreading to neighboring nucleosomes. The earliest nucleation sites are limited to specific regions of a small number of recently active retrotransposon families and often appear over promoter and 5' regions of LTR retrotransposons, while late nucleation sites develop broadly across the entirety of most TEs. Interestingly, early nucleating TEs are strongly associated with abundant maternal piRNAs and show early zygotic transcription. These results support a model of piRNA-associated co-transcriptional silencing while also suggesting additional mechanisms for site-restricted H3K9me3 nucleation at TEs in pre-cellular embryos.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285105PMC
http://dx.doi.org/10.7554/eLife.55612DOI Listing

Publication Analysis

Top Keywords

nucleation sites
12
h3k9me3-dependent heterochromatin
8
h3k9me3 enrichment
8
heterochromatin
6
establishment h3k9me3-dependent
4
heterochromatin embryogenesis
4
embryogenesis heterochromatin
4
heterochromatin key
4
key architectural
4
architectural feature
4

Similar Publications

Preparation of anti-shrinkage branched poly (butylene succinate-co-butylene terephthalate)/cellulose nanocrystal foam with excellent degradability and thermal insulation.

Int J Biol Macromol

January 2025

State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:

Branched poly (butylene succinate-co-butylene terephthalate) (BPBST) was synthesized by in-situ polycondensation to enhance the foamability of poly (butylene succinate-co-butylene terephthalate) (PBST) and was blended with cellulose nanocrystals (CNC) to address foam shrinkage. The introduction of 2 wt% CNC increased the crystallization temperature of BPBST from 66.6 °C to 87.

View Article and Find Full Text PDF

With the projected expansion of the general aviation sector and recent breakthroughs in sustainable aviation fuels (SAF), accurately measuring emissions from novel aircraft engines powered by SAF is paramount for evaluating the role of aviation industry in emission reduction trends and environmental consequences. Current SAF research primarily centers on low blend ratios, neglecting data on 100% SAF. This study bridges this gap by experimentally determining emissions indices for gaseous pollutants (CO, CO, HC, NOx), total particulate matter (PM) counts and sizes, and non-volatile particulate matter (nvPM) number and mass concentrations from a heavy-fuel aircraft piston engines (HF-APE) using hydroprocessed esters and fatty acids-derived SAF (HEFA-SAF), adhering to airworthiness-standard sampling and measurement protocols.

View Article and Find Full Text PDF

The molecular chains of recycled polyethylene terephthalate (rPET) show breakage during daily use, causing poor crystallization and leading to mechanical properties that, when blended with the nucleating agent, become an effective method of solving this problem. The salt-nucleating agent sodium benzoate (SB), disodium terephthalate (DT), and trisodium 1,3,5benzene tricarboxylic (TBT) were synthesized, and an rPET/nucleating agent blend was prepared. The intrinsic viscosity () results showed that the of the rPET/SB was decreased, which indicated the breakage of the rPET molecular chains.

View Article and Find Full Text PDF

Microbial-induced Synthesis of nano NiFe LDH for High-efficiency Oxygen Evolution.

Chemistry

January 2025

Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.

NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.

View Article and Find Full Text PDF

Potassium metal batteries are emerging as a promising high-energy density storage solution, valued for their cost-effectiveness and low electrochemical potential. However, understanding the role of potassiphilic sites in nucleation and growth remains challenging. This study introduces a single-atom iron, coordinated by nitrogen atoms in a 3D hierarchical porous carbon fiber (Fe─N-PCF), which enhances ion and electron transport, improves nucleation and diffusion kinetics, and reduces energy barriers for potassium deposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!