Room-Temperature Phosphorescence Emitters Exhibiting Red to Near-Infrared Emission Derived from Intermolecular Charge-Transfer Triplet States of Naphthalenediimide-Halobenzoate Triad Molecules.

Chemistry

Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.

Published: July 2021

Invited for the cover of this issue is Toshikazu Ono, Yoshio Hisaeda and co-workers at Kyushu University and their collaborators at Ochanomizu University, Chuo University, and Institute for Molecular Science. The image depicts a molecular assembly structure shining like a jewel, glowing in the red-to-near infrared region. Read the full text of the article at 10.1002/chem.202100906.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202101685DOI Listing

Publication Analysis

Top Keywords

room-temperature phosphorescence
4
phosphorescence emitters
4
emitters exhibiting
4
exhibiting red
4
red near-infrared
4
near-infrared emission
4
emission derived
4
derived intermolecular
4
intermolecular charge-transfer
4
charge-transfer triplet
4

Similar Publications

The advancement of organic room temperature phosphorescence (RTP) materials has attracted considerable interest owing to their extensive applications. Their distinct advantages, including a metal-free composition, low toxicity, and facile synthesis under ambient conditions, make them highly desirable. This study examines the delayed fluorescence (DF) and RTP of metal-free, amorphous indenophenanthridine (IND)-based derivatives (1-10) and provides insights into molecular functionalisation and host matrix effects on delayed emission (RTP and DF).

View Article and Find Full Text PDF

We report a series of dibenzyl isophthalates (DBIs) as novel hosts for room-temperature phosphorescence (RTP) host-guest systems, achieving RTP quantum yields (QY) of up to 77% or lifetimes of up to 21.0 s with the guest coronene- . Furthermore, a 4,4'-Br substituted DBI was used to form host-guest RTP systems with 15 different aromatic guest molecules, to tune the phosphorescence emission color from blue to red and to demonstrate the versatility of the host.

View Article and Find Full Text PDF

We present the synthesis, characterization, and photophysical properties of two pyrene-modified () pincer bismuth complexes, where the pyrenyl residues are either part of the cyclometalating pincer ligand (1) or bound as monodentate ligands to the Bi ion (2). Both complexes are dually emissive at 77 K. For complex 2, pyrenyl phosphorescence persists at r.

View Article and Find Full Text PDF

Elucidating the mechanism behind the significant changes in photoluminescence behavior after powder compression into a tablet.

Phys Chem Chem Phys

January 2025

Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.

Nonconventional luminogens have great potential for applications in fields like anti-counterfeiting encryption. But so far, the photoluminescence quantum yield (PLQY) of most of these powders is still relatively low and the persistent room temperature phosphorescence (p-RTP) emission is relatively weak. To improve their PLQY and p-RTP, pressing the powder into tablets has been preliminarily proven to be an effective method, but the specific mechanism has not been fully elucidated yet.

View Article and Find Full Text PDF

The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!