Impact of air-frying on the plasmalogens deterioration and oxidation in oyster revealed by mild acid hydrolysis and HILIC-MS-based lipidomics analysis.

Electrophoresis

Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China.

Published: August 2021

Oyster is rich in plasmalogens that are ether phospholipids with biological functions to human body. Air-frying is a popular technique for preparing delicious oyster but makes the plasmalogens vulnerable to oxidation. In this study, the effect of air-frying processing on plasmalogens oxidation was studied by lipidomic approach. Plasmalogens were always mixed with normal phospholipids, thus the lipid extract was treated with mild acid hydrolysis to rapidly degrade plasmalogens owing to the acid lability of vinyl ether linkage at sn-1 position. After hydrophilic interaction chromatography MS/MS analysis, there were three plasmalogen classes, plasmanylcholine, plasmanylethanolamine, and plasmanylinositol, completely separated, and each plasmalogen molecular species was identified and quantified. It indicated that the content of plasmalogens underwent an obvious decrease during the air-frying process. To weaken such effect, the influence of air-frying temperature was further inspected by multivariate statistical analyses. The main variables, including the ions of m/z 756.4927, 784.5486, 828.5812, etc., were revealed by unsupervised principle component analysis, supervised orthogonal partial least-square analysis, and variable importance in projection plot. As a conclusion, air-frying has health benefits in reducing fat content but destructive to plasmalogens, thus interventions are recommended to prevent the degradation of plasmalogens.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.202100106DOI Listing

Publication Analysis

Top Keywords

plasmalogens
9
mild acid
8
acid hydrolysis
8
air-frying
5
impact air-frying
4
air-frying plasmalogens
4
plasmalogens deterioration
4
deterioration oxidation
4
oxidation oyster
4
oyster revealed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!