Multidrug-resistant bacterial infections are a grand challenge to global medical and health systems. Therefore, it is urgent to develop versatile antibacterial strategies that can combat bacterial resistance without displaying toxicity. Here, we synthesize antibacterial polypeptide-conjugated gold nanoparticles that exhibit potent antibacterial activities against clinically isolated multiple drug resistance Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus, and excellent in vitro and in vivo biocompatibility. The antibacterial mechanism study indicates that over-production of reactive oxygen species results in the killing of bacteria. The overall antibacterial performance of these polypeptide-conjugated gold nanoparticles and the convenient synthesis of these polypeptides via lithium hexamethyldisilazide-initiated fast ring-opening polymerization on α-amino acid N-carboxyanhydride imply the potential application of this strategy in treating bacterial infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1tb00533b | DOI Listing |
Colloids Surf B Biointerfaces
November 2021
Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China. Electronic address:
Combined chemo-photothermal therapy of gold nanorods (GNRs) for cancer treatment shows better therapeutic efficiency than mono-chemotherapy, which has gained worldwide interests of scientists and clinician in both laboratory and clinic application. However, high cytotoxicity, declined delivery efficiency, and unsatisfactory therapy effect of the GNRs are still challenging in anti-cancer treatment. Herein, a series of pH-sensitively zwitterionic polypeptide conjugated GNRs were synthesized via a gold-thiol interaction for combination of chemo-photothermal therapy in cervical cancer treatment.
View Article and Find Full Text PDFJ Mater Chem B
June 2021
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China. and Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
Multidrug-resistant bacterial infections are a grand challenge to global medical and health systems. Therefore, it is urgent to develop versatile antibacterial strategies that can combat bacterial resistance without displaying toxicity. Here, we synthesize antibacterial polypeptide-conjugated gold nanoparticles that exhibit potent antibacterial activities against clinically isolated multiple drug resistance Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus, and excellent in vitro and in vivo biocompatibility.
View Article and Find Full Text PDFACS Nano
January 2012
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam/Golm, Germany.
We present a general strategy to create polypeptide-gold nanoconjugates by a one-pot synthesis approach, where polypeptides act not only as capping agents but also as reductants for the formation of gold nanoparticles without the need of an additional reducing agent. The present approach is environmentally benign, facile, and flexible for the design of functional polypeptide-gold nanoconjugates. As a demonstration of as-synthesized nanoconjugates for biomedical applications, the resulting positively charged polypeptide-conjugated gold nanoparticles are applied for gene delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!