A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Perinatal Vitamin D Deficiency on Lung Mesenchymal Stem Cell Differentiation and Injury Repair Potential. | LitMetric

Effect of Perinatal Vitamin D Deficiency on Lung Mesenchymal Stem Cell Differentiation and Injury Repair Potential.

Am J Respir Cell Mol Biol

Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California.

Published: November 2021

Stem cells, including the resident lung mesenchymal stem cells (LMSCs), are critically important for injury repair. Compelling evidence links perinatal vitamin D (VD) deficiency to reactive airway disease; however, the effects of perinatal VD deficiency on LMSC function is unknown. We tested the hypothesis that perinatal VD deficiency alters LMSC proliferation, differentiation, and function, leading to an enhanced myogenic phenotype. We also determined whether LMSCs' effects on alveolar type II (ATII) cell function are paracrine. Using an established rat model of perinatal VD deficiency, we studied the effects of four dietary regimens (0, 250, 500, or 1,000 IU/kg cholecalciferol-supplemented groups). At Postnatal Day 21, LMSCs were isolated, and cell proliferation and differentiation (under basal and adipogenic induction conditions) were determined. LMSC paracrine effects on ATII cell proliferation and differentiation were determined by culturing ATII cells in LMSC-conditioned media from different experimental groups. Using flow cytometry, >95% of cells were CD45-ve, >90% were CD90 + ve, >58% were CD105 + ve, and >64% were Stro-1 + ve, indicating their stem cell phenotype. Compared with the VD-supplemented groups, LMSCs from the VD-deficient group demonstrated suppressed PPARγ, but enhanced Wnt signaling, under basal and adipogenic induction conditions. LMSCs from 250 VD- and 500 VD-supplemented groups effectively blocked the effects of perinatal VD deficiency. LMSC-conditioned media from the VD-deficient group inhibited ATII cell proliferation and differentiation compared with those from the 250 VD- and 500 VD-supplemented groups. These data support the concept that perinatal VD deficiency alters LMSC proliferation and differentiation, potentially contributing to increased respiratory morbidity seen in children born to mothers with VD deficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641851PMC
http://dx.doi.org/10.1165/rcmb.2020-0183OCDOI Listing

Publication Analysis

Top Keywords

perinatal deficiency
20
proliferation differentiation
20
atii cell
12
cell proliferation
12
vd-supplemented groups
12
perinatal vitamin
8
deficiency
8
vitamin deficiency
8
lung mesenchymal
8
mesenchymal stem
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!