Multifaceted Regulation of Potassium-Ion Channels by Graphene Quantum Dots.

ACS Appl Mater Interfaces

Institute of Quantitative Biology, Shanghai Institute for Advanced Study, Department of Physics, Zhejiang University, Hangzhou 310027, China.

Published: June 2021

Graphene quantum dots (GQDs) are emerging as a versatile nanomaterial with numerous proposed biomedical applications. Despite the explosion in potential applications, the molecular interactions between GQDs and complex biomolecular systems, including potassium-ion (K) channels, remain largely unknown. Here, we use molecular dynamics (MD) simulations and electrophysiology to study the interactions between GQDs and three representative K channels, which participate in a variety of physiological processes and are closely related to many disease states. Using MD simulations, we observed that GQDs adopt distinct contact poses with each of the three structurally distinct K channels. Our electrophysiological characterization of the effects of GQDs on channel currents revealed that GQDs interact with the extracellular voltage-sensing domain (VSD) of a Kv1.2 channel, augmenting current by left-shifting the voltage dependence of channel activation. In contrast, GQDs form a "lid" cluster over the extracellular mouth of inward rectifier Kir3.2, blocking the channel pore and decreasing the current in a concentration-dependent manner. Meanwhile, GQDs accumulate on the extracellular "cap domain" of K2P2 channels and have no apparent impact on the K flux through the channel. These results reveal a surprising multifaceted regulation of K channels by GQDs, which might help de novo design of nanomaterial-based channel probe openers/inhibitors that can be used to further discern channel function.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c01569DOI Listing

Publication Analysis

Top Keywords

gqds
9
multifaceted regulation
8
potassium-ion channels
8
graphene quantum
8
quantum dots
8
interactions gqds
8
channel
7
channels
6
regulation potassium-ion
4
channels graphene
4

Similar Publications

In this study, a molecularly imprinted electrochemical sensor (MIECS) was constructed based on the combination of graphene quantum dots-gold nanoparticles (GQDs-AuNPs), molecular imprinting polymer (MIP), and electrochemical technology for the ultra-sensitive detection of 17β-estradiol (E). GQDs-AuNPs were synthesized and modified on the surface of glassy carbon electrodes (GCE). Safranine T was used as the functional monomer and E was the template molecule for self-assembly and electropolymerization, thus generating an MIP film on the electrode surface.

View Article and Find Full Text PDF

The simulation of ideal and non-ideal conditions using the SCAPS-1D simulator for novel structure Ag/FTO/CuBiO/GQD/Au was done for the first time. The recombination of charge carriers in CuBiO is an inherent problem due to very low hole mobility and polaron transport in the valence band. The in-depth analysis of the simulation result revealed that Graphene Quantum Dots (GQDs) can act as an appropriate hole transport layer (HTL) and can enhance hole transportation.

View Article and Find Full Text PDF

Pathogenic bacteria are the source of many serious health problems, such as foodborne diseases and hospital infections. Timely and accurate detection of these pathogens is of vital significance for disease prevention, control of epidemic spread, and protection of public health security. Rapid identification of pathogenic bacteria has become a research focus in recent years.

View Article and Find Full Text PDF

Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects.

View Article and Find Full Text PDF

Strategic design and development of nanomaterials-based detection platforms specific to critical biomarkers like bilirubin holds immense promise for revolutionizing early disease detection. Bilirubin (BR) plays a pivotal role as a biomarker for liver function, making accurate and timely detection of BR crucial for diagnosing and monitoring of liver diseases. In this work, we synthesized blue light emitting graphene quantum dots (GQDs) via a single step pyrolysis method, which exhibited excellent photostability and biocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!